Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541736

RESUMO

Type-2 diabetes mellitus (T2DM)-induced sarcopenia is intertwined with diminished insulin sensitivity and extracellular matrix (ECM) remodeling in skeletal muscle and other organs. Physical activities such as aerobic exercise play a crucial role in regulating blood glucose levels, insulin sensitivity, metabolic pathways, oxidative stress, fibrosis, ECM remodeling, and muscle regeneration by modulating differentially expressed protein (DEP) levels. The objectives of our research were to investigate the effect of six weeks of aerobic exercise on the gastrocnemius and soleus muscle of db/db mice's DEP levels compared to those of sedentary db/db mice. A total of eight db/db mice were divided into two groups (n = 4 per group), namely sedentary mice (SED) and exercise-trained mice (ET), of which the latter were subjected to six weeks of a moderate-intensity aerobic exercise intervention for five days per week. After the exercise intervention, biochemical tests, including analyses of blood glucose and HbA1c levels, were performed. Histological analysis using H & E staining on tissue was performed to compare morphological characters. Gastrocnemius and soleus muscles were dissected and processed for proteomic analysis. Data were provided and analyzed based on the DEPs using the label-free quantification (LFQ) algorithm. Functional enrichment analysis and Ingenuity Pathway Analysis (IPA) were employed as bioinformatics tools to elucidate the molecular mechanisms involved in the DEPs and disease progression. Significantly reduced blood glucose and HbA1c levels and an increased cross-sectional area (CSA) of gastrocnemius muscle fibers were seen in the ET group after the exercise interventions due to upregulations of metabolic pathways. Using proteomics data analysis, we found a significant decrease in COL1A1, COL4A2, ENG, and LAMA4 protein levels in the ET gastrocnemius, showing a significant improvement in fibrosis recovery, ECM remodeling, and muscle regeneration via the downregulation of the TGF-ß signaling pathway. Upregulated metabolic pathways due to ET-regulated DEPs in the gastrocnemius indicated increased glucose metabolism, lipid metabolism, muscle regeneration, and insulin sensitivity, which play a crucial role in muscle regeneration and maintaining blood glucose and lipid levels. No significant changes were observed in the soleus muscle due to the type of exercise and muscle fiber composition. Our research suggests that engaging in six weeks of aerobic exercise may have a positive impact on the recovery of T2DM-induced sarcopenia, which might be a potential candidate for mitigation, prevention, and therapeutic treatment in the future.

2.
Proteomes ; 11(4)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873873

RESUMO

Trophoblast migration and invasion play crucial roles in placental development. However, the effects of (-)-epigallocatechin-3-gallate (EGCG) on trophoblast cell functions remain largely unexplored. In this study, we investigated the impact of EGCG on the survival of trophoblast cells and employed a proteomics analysis to evaluate its influence on trophoblast cell migration and invasion. Be-Wo trophoblast cells were treated with EGCG, and a zone closure assay was conducted to assess the cell migration and invasion. Subsequently, a proteomics analysis was performed on the treated and control groups, followed by a bioinformatics analysis to evaluate the affected biological pathways and protein networks. A quantitative real-time PCR and Western blot analysis were carried out to validate the proteomics findings. Our results showed that EGCG significantly suppressed the trophoblast migration and invasion at a concentration not affecting cell survival. The proteomics analysis revealed notable differences in the protein expression between the EGCG-treated and control groups. Specifically, EGCG downregulated the signaling pathways related to EIF2, mTOR, and estrogen response, as well as the processes associated with the cytoskeleton, extracellular matrix, and protein translation. Conversely, EGCG upregulated the pathways linked to lipid degradation and oxidative metabolism. The quantitative PCR showed that EGCG modulated protein expression by regulating gene transcription, and the Western blot analysis confirmed its impact on cytoskeleton and extracellular matrix reorganization. These findings suggest EGCG may inhibit trophoblast migration and invasion through multiple signaling pathways, highlighting the potential risks associated with consuming EGCG-containing products during pregnancy. Future research should investigate the impact of EGCG intake on maternal and fetal proteoforms.

3.
Clin Biochem ; 108: 27-41, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35843269

RESUMO

BACKGROUND: Sjogren's syndrome (SS) is a systemic autoimmune disease featured with a dry mouth and dry eyes. Several autoantibodies, including anti-SSA, anti-SSB, antinuclear antibodies can be detected in patients with SS. Oxidation-specific epitopes (OSEs) can be formed from malondialdehyde (MDA)-modified protein adducts and trigger chronic inflammation. In this study, our purposes were used serum levels of anti-MDA-modified peptide adducts autoantibodies to evaluate predictive performance by machine learning algorithms in primary Sjögren's syndrome (pSS) and assess the association between pSS and healthy controls. METHODS: Three novel MDA-modified peptide adducts, including immunoglobulin (Ig) gamma heavy chain 1 (IGHG1)102-131, complement factor H (CFAH)1045-1062, and Ig heavy constant alpha 1 (IGHA1)307-327 were identified and validated. Serum levels of protein, MDA-modified protein adducts, MDA, and autoantibodies recognizing unmodified peptides and MDA-modified peptide adducts were measured. Statistically significance in correlations and odds ratios (ORs) were estimated. RESULTS: The random forest classifier utilized autoantibodies combination composed of IgM anti-IGHG1102-131, IgM anti-IGHG1102-131 MDA and IgM anti-IGHA1307-327 achieved predictive performance as an accuracy of 88.0%, a sensitivity of 93.7%, and a specificity of 84.4% which may be as potential diagnostic biomarkers to differentiate patients with pSS from rheumatoid arthritis (RA), and secondary SS in RA and HCs. CONCLUSIONS: Our findings imply that low levels of IgA anti-IGHG1102-131 MDA (OR = 2.646), IgA anti-IGHG1102-131 (OR = 2.408), IgA anti-CFAH1045-1062 (OR = 2.571), and IgA anti-IGHA1307-327 (OR = 2.905) may denote developing risks of pSS, respectively.


Assuntos
Artrite Reumatoide , Síndrome de Sjogren , Anticorpos Antinucleares , Autoanticorpos , Biomarcadores , Fator H do Complemento , Epitopos , Feminino , Humanos , Imunoglobulina A , Imunoglobulina M , Malondialdeído , Peptídeos , Síndrome de Sjogren/diagnóstico
4.
Nat Commun ; 13(1): 4174, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35854007

RESUMO

Regulation of fatty acid uptake, lipid production and storage, and metabolism of lipid droplets (LDs), is closely related to lipid homeostasis, adipocyte hypertrophy and obesity. We report here that stomatin, a major constituent of lipid raft, participates in adipogenesis and adipocyte maturation by modulating related signaling pathways. In adipocyte-like cells, increased stomatin promotes LD growth or enlargements by facilitating LD-LD fusion. It also promotes fatty acid uptake from extracellular environment by recruiting effector molecules, such as FAT/CD36 translocase, to lipid rafts to promote internalization of fatty acids. Stomatin transgenic mice fed with high-fat diet exhibit obesity, insulin resistance and hepatic impairments; however, such phenotypes are not seen in transgenic animals fed with regular diet. Inhibitions of stomatin by gene knockdown or OB-1 inhibit adipogenic differentiation and LD growth through downregulation of PPARγ pathway. Effects of stomatin on PPARγ involves ERK signaling; however, an alternate pathway may also exist.


Assuntos
Adipogenia , Gotículas Lipídicas , Adipogenia/genética , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Sistema de Sinalização das MAP Quinases , Camundongos , Obesidade/genética , Obesidade/metabolismo , PPAR gama/genética , PPAR gama/metabolismo
5.
Int J Med Sci ; 19(5): 893-900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693737

RESUMO

Purpose: The alteration of the exosomal proteins in the aqueous humor (AH) is linked to the development of eye diseases. The goal of this study was to examine the exosomal protein profile of patients with age-related macular degeneration (AMD) to better understand their role in the pathogenesis of AMD. Methods: Exosomes were isolated from the AH of 28 AMD and 25 control eyes. The quality, concentration, and size distribution of exosomes were measured using a nanoparticle tracking analysis system (NTA). Total exosomal proteins from each sample were purified and digested with trypsin for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Results: Based on LC-MS/MS analysis, we got 105 exosomal peptides from AMD and control patients. Gene ontology (GO) analysis in the biology process revealed that exosomal proteins of AMD were enriched in the lipoprotein metabolic process. T-test analysis revealed six exosomal proteins in patients with AMD were significantly different from controls. Comparing the exosomal protein profile of AMD patients who were receiving anti-VEGF therapy, we observed the amount of two proteins decreased with the duration of the anti-VEGF treatment time. Conclusions: In this study, we successfully isolated and purified AH exosomes. Our results provide pioneering findings for the exosomal protein profile in AMD development and under therapy. These unique proteins could be the new targets for drug discovery or biological markers for evaluating therapeutic efficacy.


Assuntos
Exossomos , Degeneração Macular , Humor Aquoso/metabolismo , Cromatografia Líquida , Exossomos/metabolismo , Humanos , Degeneração Macular/tratamento farmacológico , Degeneração Macular/genética , Degeneração Macular/metabolismo , Proteômica , Espectrometria de Massas em Tandem
6.
Dis Markers ; 2022: 9886846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571611

RESUMO

Idiopathic epiretinal membrane (iERM) is a pathological fibrocellular change in the vitreoretinal junction over the macular area; however, possible pathogenic mechanisms remain unclear. Changes in the differential protein composition of the aqueous humor (AH) may represent potential molecular changes associated with iERM. To gain new insights into the molecular mechanisms of iERM pathology, a sensitive label-free proteomics analysis was performed to compare AH protein expressions in patients with cataracts with or without iERM. This study employed nanoflow ultra-high-performance liquid chromatography-tandem mass spectrometry to investigate protein compositions of the AH obtained from individual human cataract eyes from 10 patients with iERM and 10 age-matched controls without iERM. Eight proteins were differentially expressed between the iERM and control samples, among which six proteins were upregulated and two were downregulated. A gene ontology (GO) analysis revealed that iERM was closely associated with several biological processes, such as immunity interactions, cell proliferation, and extracellular matrix remodeling. Additionally, multiple proteins, including lumican, cyclin-dependent kinase 13, and collagen alpha-3(VI) chain, were correlated with the central retinal thickness, indicating a multifactorial response in the pathogenic process of iERM. Changes in the AH level of lumican between iERM and control samples were also confirmed by an enzyme-linked immunosorbent assay. In conclusion, several pathological pathways involved in iERM were identified in the AH by a proteomic analysis, including immune reactions, cell proliferation, and remodeling of the extracellular matrix. Lumican is a potential aqueous biomarker for predicting iERM development and monitoring its progression. More clinical parameters also need to be identified to complete the analysis, and those could provide additional targets for treating and preventing iERM.


Assuntos
Membrana Epirretiniana , Humor Aquoso , Membrana Epirretiniana/metabolismo , Membrana Epirretiniana/patologia , Humanos , Lumicana/análise , Proteoma/análise , Proteômica/métodos
7.
Int J Med Sci ; 19(3): 499-510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370469

RESUMO

Postmenopausal women exhibit a higher prevalence of obesity due to decreased energy expenditure and increased food intake compared to their premenopausal counterparts. Brown adipose tissue (BAT) plays a key role in energy homeostasis, thus providing us with appealing therapeutic targets in obesity. However, how BAT proteomes are altered in response to low levels of estrogen remains unclear. To better understand the underlying mechanisms between the postmenopausal state and BAT proteomic changes, our study aimed to investigate the effect of ovariectomy on the BAT proteome. In this study, eight-week-old female Sprague Dawley rats were randomly allocated into bilateral ovariectomy (Ovx) and sham operation (Sham) groups. Mass spectrometry was used for proteomics assay and Ingenuity Pathway Analysis was applied to examine the differentially regulated proteins. Of the 1,412 identified proteins, 18 proteins were significantly upregulated, whereas 36 proteins were significantly downregulated in the Ovx group as compared to the Sham group. Our findings demonstrate that the proteins involved in BAT morphology, the browning of white adipose tissue, and metabolic substrates for thermogenesis were regulated by ovariectomy. The dysregulation of proteins by ovariectomy might be related to the disruption of BAT function in the postmenopausal status. Understanding how BAT proteomes are altered in response to ovariectomy may illuminate novel therapeutic strategies for the management of postmenopausal weight gain in the future.


Assuntos
Tecido Adiposo Marrom , Proteoma , Tecido Adiposo Marrom/metabolismo , Animais , Feminino , Humanos , Ovariectomia/efeitos adversos , Proteoma/metabolismo , Proteômica , Ratos , Ratos Sprague-Dawley
8.
Biology (Basel) ; 11(2)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35205118

RESUMO

Atherosclerosis is the preliminary cause of coronary artery disease, one of the diseases that account for the largest number of fatal mortalities. Physical activity is an effective strategy to restrain atherosclerosis from deterioration. Evidence indicated that changes in the proteomic profile are highly associated with atherosclerosis development, but the mechanism behind exercise for atherosclerosis amelioration has not yet been investigated from a proteomics perspective. Hence, the proteomic profiles could further elucidate the systematic effects of exercise intervention on ApoE knockout atherosclerotic model and high-fat-diet intervention. In the current study, Apoeem1Narl/Narl mice were randomly allocated into a normal diet (ND), Western diet (WD), and WD with 12-week exercise intervention (WD EX) groups. The plasma proteome between WD and WD EX groups demonstrate the significant difference, and ten major pathways, including cardiovascular disease (CVD)-hematological disease, inflammatory disease, infectious diseases, inflammatory response, cell-to-cell signaling and interaction, connective tissue disorders_inflammatory disease, metabolic disease_organismal injury and abnormalities, cell-to-cell signaling and interaction, connective tissue disorders_inflammatory disease, and endocrine system disorders_gastrointestinal disease, etc., were generated by the IPA analysis. The 15 proteins (MYOCD, PROS1, C2, SERPINA10, CRP, F5, C5, CFB, FGG, CFH, F12, PRDX2, PROZ, PPIA, and HABP2) critically involved in CVD-hematological disease pathway showed significant difference between WD and WD EX groups. In current study, exercise could significantly alleviate the significantly elevated C5 and inflammation induced by the WD group in accordance with amelioration of atherosclerosis. Therefore, exercise could mitigate chemotaxis through the modulation of the C5 level and innate immunity, thereby alleviating the pathogenesis of atherosclerosis in Western-diet-induced obese mice.

9.
Cancers (Basel) ; 14(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008409

RESUMO

O-GlcNAcylation is a reversible and dynamic post-translational protein modification catalyzed by O-GlcNAc transferase (OGT). Despite the reported association of O-GlcNAcylation with cancer metastasis, the O-GlcNAc proteome profile for cancer aggressiveness remains largely uncharacterized. Here, we report our comparative O-GlcNAc proteome profiling of two differentially invasive lung adenocarcinoma cell lines, which identified 158 down-regulated and 106 up-regulated candidates in highly invasive cells. Among these differential proteins, a nuclear RNA-binding protein, SAM68 (SRC associated in mitosis of 68 kDa), was further investigated. Results showed that SAM68 is O-GlcNAcylated and may interact with OGT in the nucleus. Eleven O-GlcNAcylation sites were identified, and data from mutant analysis suggested that multiple serine residues in the N-terminal region are important for O-GlcNAcylation and the function of SAM68 in modulating cancer cell migration and invasion. Analysis of clinical specimens found that high SAM68 expression was associated with late cancer stages, and patients with high-OGT/high-SAM68 expression in their tumors had poorer overall survival compared to those with low-OGT/low-SAM68 expression. Our study revealed an invasiveness-associated O-GlcNAc proteome profile and connected O-GlcNAcylated SAM68 to lung cancer aggressiveness.

10.
J Clin Med ; 10(24)2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34945026

RESUMO

Cataracts are one of the most common eye diseases that can cause blindness. Discovering susceptibility factors in the proteome that contribute to cataract development would be helpful in gaining new insights in the molecular mechanisms of the cataract process. We used label-free nanoflow ultra-high-performance liquid chromatography-tandem mass spectrometry to compare aqueous humor protein expressions in cataract patients with different cataract risk factors such as diabetes mellitus (DM) and smoking and in controls (with cataract) without risk exposure. Eight patients with diabetes and who smoked (with double risk factors), five patients with diabetes and five patients who smoked (both with a single risk factor), and nine aged-matched cataract controls patients (non-risk exposure) were enrolled. In total, 136 aqueous humor proteins were identified, of which only alpha-2-Heremans-Schmid (HS)-glycoprotein was considered to be significantly risk-associated because it was differentially expressed in these three groups and exhibited increased expression with increasing risk factors. Significant changes in the aqueous humor level of alpha-2-HS-glycoprotein between DM and control samples and between smoking and control samples were confirmed using ELISA. The alpha-2-HS-glycoprotein, called fetuin-a, could be a potential aqueous biomarker associated with DM and smoking, which were cataract risk factors.

11.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801653

RESUMO

Protein O-GlcNAcylation is a dynamic post-translational modification involving the attachment of N-acetylglucosamine (GlcNAc) to the hydroxyl groups of Ser/Thr residues on numerous nucleocytoplasmic proteins. Two enzymes are responsible for O-GlcNAc cycling on substrate proteins: O-GlcNAc transferase (OGT) catalyzes the addition while O-GlcNAcase (OGA) helps the removal of GlcNAc. O-GlcNAcylation modifies protein functions; therefore, dysregulation of O-GlcNAcylation affects cell physiology and contributes to pathogenesis. To maintain homeostasis of cellular O-GlcNAcylation, there exists feedback regulation of OGT and OGA expression responding to fluctuations of O-GlcNAc levels; yet, little is known about the molecular mechanisms involved. In this study, we investigated the O-GlcNAc-feedback regulation of OGT and OGA expression in lung cancer cells. Results suggest that, upon alterations in O-GlcNAcylation, the regulation of OGA expression occurs at the mRNA level and likely involves epigenetic mechanisms, while modulation of OGT expression is through translation control. Further analyses revealed that the eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) contributes to the downregulation of OGT induced by hyper-O-GlcNAcylation; the S5A/S6A O-GlcNAcylation-site mutant of 4E-BP1 cannot support this regulation, suggesting an important role of O-GlcNAcylation. The results provide additional insight into the molecular mechanisms through which cells may fine-tune intracellular O-GlcNAc levels to maintain homeostasis.


Assuntos
Acetilglucosamina/química , Regulação Enzimológica da Expressão Gênica , N-Acetilglucosaminiltransferases/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Epigênese Genética , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Homeostase , Humanos , Neoplasias Pulmonares/enzimologia , Mutação , Peptídeos/química , Processamento de Proteína Pós-Traducional , Ribossomos/química , beta-N-Acetil-Hexosaminidases/química
12.
Int J Med Sci ; 18(9): 2023-2029, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33850473

RESUMO

Objectives: Myopia is the most common refractive vision disorder. In recent years, several studies have suggested that the alteration of the exosomal protein levels in the aqueous humor (AH) is associated with the development of several eye diseases. Therefore, we aimed to explore the exosomal protein profile of the AH from myopia patients. Methods: Exosomes were isolated from the AH. The quality, concentration, and size distribution of exosomes for each patient were measured using nanoparticle tracking analysis system. Then, the exosomal proteins were purified and digested by trypsin for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Results: There was no significant difference observed between the myopia and control when comparing the concentration and size distribution of exosomes in the AH for each sample. Based on LC-MS/MS analysis, myopia patients had higher and more complex exosomal peptide content. We found two proteins that were common in AH exosomes and eight proteins that were highly expressed in the myopia group. Conclusions: Our results provide pioneering findings for the exploration of the exosomal protein profile in myopia development. Further studies may provide significant information for the diagnosis, clinical treatment, and prognosis of myopia.


Assuntos
Humor Aquoso/metabolismo , Exossomos/metabolismo , Proteínas do Olho/análise , Miopia/patologia , Idoso , Idoso de 80 Anos ou mais , Humor Aquoso/citologia , Estudos de Casos e Controles , Catarata/complicações , Extração de Catarata , Cromatografia Líquida de Alta Pressão , Proteínas do Olho/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miopia/complicações , Miopia/diagnóstico , Proteômica , Espectrometria de Massas em Tandem
13.
J Fungi (Basel) ; 7(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671246

RESUMO

The most commonly applied wood preservatives are based on creosote, pentachlorophenol, and waterborne chromate copper arsenate, which negatively affect the environment. Thus, environmentally friendly wood preservatives are required. This study investigated the antifungal activity and mechanism of several long-chain alkyl gallates (3,4,5-trihydroxybenzoates) against white-rot fungi, Lenzites betulina and Trametes versicolor. The results revealed that octyl gallate (OG) had the best antifungal activity. Additionally, OG may have a mechanism of action similar to surfactants and inhibit ATPase activity, causing mitochondrial dysfunction and endogenous reactive oxygen species (ROS) production. Upon exposure to endogenous ROS, cells rapidly inhibit the synthesis of 60S ribosomal subunits, thus reducing the mycelial growth rate. L. betulina and T. versicolor also remodeled their energy metabolism in response to low ATP levels and endogenous ROS. After OG treatment, ATP citrate synthase activity was downregulated and glycolytic activity was upregulated in L. betulina. However, the activity of aerobic pathways was decreased and the oxidative branch of the pentose phosphate pathway was redirected form nicotinamide adenine dinucleotide phosphate (NADPH) to minimize endogenous ROS-mediated damage in T. versicolor. Taken together, these observations reveal that OG is a potent inhibitor of white-rot fungus. Further structural optimization research and pharmacological investigations are warranted.

14.
Commun Biol ; 3(1): 658, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177645

RESUMO

Bats hibernate to survive stressful conditions. Examination of whole cell and mitochondrial proteomes of the liver of Myotis ricketti revealed that torpid bats had endoplasmic reticulum unfolded protein response (UPRER), global reduction in glycolysis, enhancement of lipolysis, and selective amino acid metabolism. Compared to active bats, torpid bats had higher amounts of phosphorylated serine/threonine kinase (p-Akt) and UPRER markers such as PKR-like endoplasmic reticulum kinase (PERK) and activating transcription factor 4 (ATF4). Torpid bats also had lower amounts of the complex of Kelch-like ECH-associated protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) (p65)/I-κBα. Cellular redistribution of 78 kDa glucose-regulated protein (GRP78) and reduced binding between PERK and GRP78 were also seen in torpid bats. Evidence of such was not observed in fasted, cold-treated, or normal mice. These data indicated that bats activate Akt, Nrf2, and NF-κB via the PERK-ATF4 regulatory axis against endoplasmic reticulum stresses during hibernation.


Assuntos
Quirópteros/fisiologia , Degradação Associada com o Retículo Endoplasmático/fisiologia , Hibernação/fisiologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Quirópteros/genética , Quirópteros/metabolismo , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fator 2 Relacionado a NF-E2/metabolismo
15.
Food Sci Nutr ; 8(7): 3525-3534, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724615

RESUMO

Lactobacillus plantarum TWK10 (LP10) is a probiotic known to improve endurance exercise performance. Here, we analyze the proteomics and metagenomic changes in a LP10 supplemented mouse model. Male ICR mice were divided into two groups (n = 8) to receive by oral gavage either vehicle or of LP10 for 6 weeks. Proteins changes by LP10 treatment were subjected to the Ingenuity Pathway Analysis (IPA) to provide corroborative evidence for differential regulation of molecular and cellular functions affecting metabolic processes. Fecal samples were obtained from each mouse, and the microbial community profile analyzed by pyrosequencing of the 16S rRNA genes. Of the 880 identified proteins, 25 proteins were significantly downregulated and 44 proteins were significantly upregulated in the LP10 treated compared to vehicle group. LP10 supplementation shift in the gut microbiota to butyrate-producing members and provided from lipid oxidation since peroxisomal fatty acid oxidation in liver.

16.
Mol Med Rep ; 22(2): 939-947, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32468006

RESUMO

Although non­alcoholic fatty liver disease (NAFLD) is considered a benign disorder, hepatic steatosis has been proposed to be involved in the tumorigenesis of liver cancer. However, the underlying mechanism for carcinogenesis in fatty liver diseases remains unclear. Cancer stem cells (CSCs) have been hypothesized to serve a key role in tumorigenesis. Tumor formation begins with a subset of heterogeneous cells that share properties with stem cells, such as self­renewal and undifferentiated properties. Our previous study reported that the saturated fatty acid palmitate (PA) significantly enhanced the CSC properties of the HepG2 human liver cancer cell line; however, its underlying mechanisms are unknown. In the present study, a proteomic approach was used to investigate the palmitoylation of proteins in HepG2 CSCs. CSC behavior was induced in HepG2 cells via 200 µM PA. Proteomic analysis was performed to identify post­transcriptional modifications of proteins in HepG2 CSCs in response to PA treatment. The present study identified proteins modified by palmitoylation in HepG2 CSC spheres formed following PA treatment. It was therefore hypothesized that palmitoylation may be crucial for CSC sphere formation. Furthermore, the present study demonstrated that two palmitoylation inhibitors, tunicamycin (5, 10 and 25 µg/ml) and 2­bromohexadecanoic acid (25, 50 and 150 µM), significantly decreased CSC sphere formation without affecting cell viability. An association was identified between sphere formation capacity and tumor­initiating capacity of CSCs. The results of the present study demonstrated that protein palmitoylation may influence the PA­induced CSC tumor­initiating capacity, and that the inhibition of palmitoylation may be a suitable chemopreventive strategy for treating patients with NAFLD.


Assuntos
Lipoilação/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas/metabolismo , Esferoides Celulares/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida , Células Hep G2/efeitos dos fármacos , Células Hep G2/metabolismo , Células Hep G2/patologia , Humanos , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Palmitatos/farmacologia , Proteínas/química , Proteômica , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Espectrometria de Massas em Tandem , Tunicamicina/farmacologia
17.
Cancers (Basel) ; 12(5)2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349352

RESUMO

The 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) is a potential regulatory node in the mevalonate pathway that is frequently dysregulated in tumors. This study found that HMGCS1 expression is upregulated in stomach adenocarcinoma samples of patients and tumorspheres of gastric cancer cells. HMGCS1 elevates the expression levels of the pluripotency genes Oct4 and SOX-2 and contributes to tumorsphere formation ability in gastric cancer cells. HMGCS1 also promotes in vitro cell growth and progression and the in vivo tumor growth and lung metastasis of gastric cancer cells. After blocking the mevalonate pathway by statin and dipyridamole, HMGCS1 exerts nonmetabolic functions in enhancing gastric cancer progression. Furthermore, the level and nuclear translocation of HMGCS1 in gastric cancer cells are induced by serum deprivation. HMGCS1 binds to and activates Oct4 and SOX-2 promoters. HMGCS1 also enhances the integrated stress response (ISR) and interacts with the endoplasmic reticulum (ER) stress transducer protein kinase RNA-like endoplasmic reticulum kinase (PERK). Our results reveal that HMGCS1 contributes to gastric cancer progression in both metabolic and nonmetabolic manners.

19.
Front Physiol ; 10: 1201, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620020

RESUMO

Regular exercise prevents lipid abnormalities and conditions such as diabetes mellitus, hypertension, and obesity; it considerably benefits sedentary individuals. However, individuals exhibit highly variable responses to exercise, probably due to genetic variations. Animal models are typically used to investigate the relationship of intrinsic exercise capacity with physiological, pathological, psychological, behavioral, and metabolic disorders. In the present study, we investigated differential physiological adaptations caused by intrinsic exercise capacity and explored the regulatory molecules or mechanisms through multiomics approaches. Outbred ICR mice (n = 100) performed an exhaustive swimming test and were ranked based on the exhaustive swimming time to distinguish intrinsically high- and low-capacity groups. Exercise performance, exercise fatigue indexes, glucose tolerance, and body compositions were assessed during the experimental processes. Furthermore, the gut microbiota, transcriptome, and proteome of soleus muscle with intrinsically high exercise capacity (HEC) and low exercise capacity (LEC) were further analyzed to reveal the most influential factors associated with differential exercise capacities. HEC mice outperformed LEC mice in physical activities (exhaustive swimming and forelimb grip strength tests) and exhibited higher glucose tolerance than LEC mice. Exercise-induced peripheral fatigue and the level of injury biomarkers (lactate, ammonia, creatine kinase, and aspartate aminotransferase) were also significantly lower in HEC mice than in LEC mice. Furthermore, the gut of the HEC mice contained significantly more Butyricicoccus than that of the LEC mice. In addition, transcriptome data of the soleus muscle revealed that the expression of microRNAs that are strongly associated with exercise performance-related physiological and metabolic functions (i.e., miR-383, miR-107, miR-30b, miR-669m, miR-191, miR-218, and miR-224) was higher in HEC mice than in LEC mice. The functional proteome data of soleus muscle indicated that the levels of key proteins related to muscle function and carbohydrate metabolism were also significantly higher in HEC mice than in LEC mice. Our study demonstrated that the mice with various intrinsic exercise capacities have different gut microbiome as well as transcriptome and proteome of soleus muscle by using multiomics approaches. The specific bacteria and regulatory factors, including miRNA and functional proteins, may be highly correlated with the adaptation of physiological functions and exercise capacity.

20.
J Food Drug Anal ; 27(2): 603-609, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30987732

RESUMO

Glycine N-methyltransferase (GNMT) protein is highly expressed in certain tissues, such as liver, pancreas, and prostate. GNMT serves multiple roles which include a methyl group transfer enzyme and a liver tumor suppressor. Benzo(a)pyrene (BaP), a family member of polycyclic aromatic hydrocarbon (PAH), is a known environmental carcinogen found in coal tar, tobacco smoke, barbecued food and incomplete combustion of auto fuel. BaP recruits cytochrome P450 to transform itself into benzo(a)pyrene-7,8-diol-9,10-epoxide (B(a)PDE), which covalently interacts with DNA causing tumorigenesis. BaP can be detoxified through GNMT and induces GNMT translocation into the cellular nucleus. GNMT translocation is accompanied by phosphorylation, but the role of phosphorylation in GNMT remains to be explored. Using liquid chromatography coupled with tandem mass spectrometry, this study identified serine 9 of GNMT as the phosphorylation site upon BaP treatment. When serine 9 was mutated and lost the capability to be phosphorylated, the occurrence of BaP-induced GNMT nuclear translocation was dramatically decreased. Also, this mutant from of GNMT lost the ability of phosphorylation and increased cytochrome P450 1A1 (Cyp1a) expression upon BaP treatment. In addition, protein kinase C (PKC) and c-Jun NH2-terminal kinase (JNK) may be required for such phosphorylation. Further characterization of phosphorylated GNMT for its link to BaP may bring new insights into chemical detoxification.


Assuntos
Benzo(a)pireno/farmacologia , Glicina N-Metiltransferase/antagonistas & inibidores , Glicina N-Metiltransferase/análise , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/análise , Proteômica , Células Cultivadas , Cromatografia Líquida , Glicina N-Metiltransferase/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...