Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(7): e2302729, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38097368

RESUMO

Acute kidney injury (AKI) is a common adverse event in chemotherapy patients. AKI is accompanied by the generation of reactive oxygen species (ROS) and inflammation. Therefore, the management of ROS and inflammation is a potential strategy for AKI mitigation. Herein, polyethylene glycol-coated osmium nanozyme-based antidotes (Os) are developed for imaging-guided photothermal therapy (PTT) in combination with cisplatin (Pt); while, avoiding AKI induced by high-dose Pt. Os nanoantidotes can enhance the efficiency of tumor treatment during combined PTT and chemotherapy and inhibit tumor metastasis by improving the hypoxic and inflammatory tumor microenvironment. Os nanoantidotes preferentially accumulate in the kidney because of their 2-nm size distribution; and then, regulate inflammation by scavenging ROS and generating oxygen to alleviate Pt-induced AKI. Os nanoantidotes can be cleared from the kidneys by urine excretion but can be degraded under hydrogen peroxide stimulation, reducing the bio-retention of these compounds. By integrating PTT with inflammatory regulation, Os nanoantidotes have the potential to reduce the side effects of chemotherapy, offering an alternative route for the clinical management of cancer patients with chemotherapy-induced AKI.


Assuntos
Injúria Renal Aguda , Antineoplásicos , Neoplasias , Humanos , Osmio/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Neoplasias/patologia , Inflamação , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Acta Biomater ; 172: 369-381, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37852456

RESUMO

Cancer stem cells (CSCs) are found in many solid tumors, which play decisive roles in the occurrence, recurrence and metastasis of tumors. However, drugs are difficult to kill CSCs due to their limited number and location in oxygen-deprived tissue far from the blood vessels. Meanwhile, the survival and stemness maintenance of CSCs strongly depend on the tumor microenvironment (TME). Herein, we developed a CD44 antibody modified iridium nanosheet with enzyme-like activity (defined as Ir Nts-Ab) that effectively eradicates CSCs for cancer therapy. We observe that Ir Nts-Ab can enrich tumor tissues to remove excessive reactive oxygen species and produce oxygen, thus alleviating hypoxia and the inflammatory TME to reduce the proportion of CSCs and inhibit metastasis. In addition, Ir Nts-Ab targets CSCs and normal cancer cells with near infrared II-region photothermal therapy (NIR-II PTT), and is easily taken up by CSCs due to recognition of the CD44 proteins. Moreover, photoacoustic imaging helps monitor drug accumulation and hypoxic TME improvement in tumor tissue. Importantly, Ir Nts-Ab has good biological safety, making it suitable for biomedical applications. This iridium nanozyme based on TME regulation as well as NIR-II PTT will be a promising strategy for the treatment of cancer. STATEMENT OF SIGNIFICANCE: Cancer stem cells (CSCs) are key factors that make tumors difficult to eradicate, and strongly depend on the hypoxic tumor microenvironment (TME), which plays a crucial role in the occurrence and metastasis of tumors. Herein, an antibody modified iridium nanosheet (definition as Ir Nts-Ab) was developed for targeted eradication of CSCs by photoacoustic imaging guided photothermal therapy (PTT) and TME regulation. Ir Nts-Ab with catalase-like activity could inhibit HIF-1α by producing oxygen, thus effectively reducing the proportion of CSCs and inhibiting tumor metastasis. Additionally, Ir Nts-Ab achieved the eradication of CSCs by PTT, and eliminated reactive oxygen species to decrease the inflammatory response, resulting in reduced tumor metastasis, which was promising for the cure of solid tumors in the clinics.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Terapia Fototérmica , Irídio/farmacologia , Irídio/uso terapêutico , Microambiente Tumoral , Técnicas Fotoacústicas/métodos , Espécies Reativas de Oxigênio , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/patologia , Oxigênio , Linhagem Celular Tumoral
3.
J Mater Chem B ; 11(35): 8528-8540, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37608753

RESUMO

Photothermal immunotherapy has shown great potential for efficient cancer treatment. However, the immunosuppressive tumor microenvironment forms a heavy barrier for photothermal-induced anti-tumor immunity by inhibiting dendritic cell (DC) maturation and cytotoxic T cell response. Moreover, the lack of reliable spatiotemporal imaging modalities makes photothermal immunotherapy difficult to guide tumor ablation and monitor therapeutic outcomes in real time. Herein, we designed a theranostic thermosensitive liposome (PLDD) as a versatile nanoplatform to boost the adaptive anti-tumor immunity of photothermal immunotherapy and to achieve multiple bioimaging modalities in a real-time manner. PLDD contains two major functional components: a multifunctional photothermal agent (DTTB) and an immune potentiator STING pathway agonist (DMXAA). Upon irradiation, the heat generated by DTTB induced the immunogenic cell death (ICD) of the tumor and dissociated the structure of thermosensitive liposome to release DMXAA, which ultimately activated the STING pathway and promoted the ICD-induced immune response by increasing DC cell maturation and T cell recruitment. Moreover, the DTTB in PLDD displayed excellent second near-infrared (NIR-II) fluorescence and photoacoustic (PA) dual-modal imaging, which provided omnibearing information on the tumor and guided the subsequent therapeutic operation. Therefore, this versatile PLDD with light-triggered promotion of anti-tumor immunity and multiple spatiotemporal imaging profiles holds great potential for the future development of cancer immunotherapy.


Assuntos
Neoplasias , Medicina de Precisão , Lipossomos , Terapia Fototérmica , Fluorescência , Imunoterapia
4.
ACS Appl Mater Interfaces ; 14(51): 56471-56482, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36519432

RESUMO

Metastasis of breast cancer is key to poor prognosis and high mortality. However, the excess reactive oxygen species (ROS) and inflammatory response induced by photothermal therapy (PTT) further aggravate tumor metastasis. Meanwhile, the hypoxic tumor microenvironment promotes tumor cells to metastasize to distant organs. Herein, the intrinsic limitations of PTT for metastatic tumor have been addressed by fabricating polyethylene glycol modified iridium tungstate (IrWOx-PEG) nanoparticles. The as-designed IrWOx-PEG nanoparticles displayed good photothermal (PT) conversion ability for duplex photoacoustic/PT imaging guided PTT and multienzyme mimetic feature for broad-spectrum ROS scavenging. On the one hand, IrWOx-PEG effectively removed excess ROS generated during PTT and reduced inflammation. On the other hand, owing to the catalase-like activity, it preferentially triggered the catalytic production of oxygen by decomposing ROS, leading to relieving of the hypoxic microenvironment. Hence, under bimodal imaging guidance, IrWOx-PEG induced PTT completely eliminated in situ breast cancer in 4T1 tumor-bearing mice with no observable system toxicity, as well as further restricting tumor metastasis to other vital organs (lungs) by ROS scavenging, anti-inflammation, and regulating hypoxic microenvironment. We anticipate that this work will lead to new treatment strategies for other metastatic cancers.


Assuntos
Neoplasias Mamárias Animais , Nanopartículas , Neoplasias , Animais , Camundongos , Fototerapia/métodos , Terapia Fototérmica , Irídio , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Neoplasias/terapia , Nanopartículas/uso terapêutico , Neoplasias Mamárias Animais/terapia , Microambiente Tumoral
5.
J Formos Med Assoc ; 118(1 Pt 3): 494-503, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30414800

RESUMO

BACKGROUND/PURPOSE: Substantial progress was made in acute kidney injury (AKI) over the past 10 years, but no therapeutic interventions have been shown to prevent AKI or accelerate functional recovery after injury. A large number of preclinical studies supports the use of recombinant human erythropoietin (rHuEPO) to prevent AKI, but the clinical trial data are inconclusive. To address concerns about preclinical study design and reporting in AKI, we here presented our rigorous experiments on the use of rHuEPO in a mouse model simulating the most common post-ischemic AKI in patients. METHODS: Use of saline vehicle or rHuEPO (100 or 1000 U/KgBW) in mice subjected to AKI induced by ischemia-reperfusion injury of left kidney 2 weeks after right nephrectomy (NX + IRI). RESULTS: NX + IRI resulted in a reproducible AKI model. Use of rHuEPO as a pretreatment or posttreatment did not affect AKI severity, functional recovery, and mouse survival regardless of gender, injury severity, or doses of rHuEPO. Administering rHuEPO with 1000 U/KgBW did increase hematocrit and modulate AKI kidney macrophages by Nos2 downregulation and Ccl17 upregulation. Active expression of erythropoietin receptor (EPOR) was not identified in renal cells by lineage tracing study, whereas expression of colony-stimulating factor 2 receptor ß (CSF2Rß) was identified in kidney macrophages and upregulated after AKI. Both EPOR and CSF2Rß were identified in cultured bone marrow derived macrophages, possibly mediated the robust inhibition of cytokine-induced phenotype switching by rHuEPO. CONCLUSION: Use of rHuEPO can modulate macrophage function but not the post-ischemic AKI severity, functional recovery and survival in mice.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Eritropoetina/farmacologia , Macrófagos/efeitos dos fármacos , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Injúria Renal Aguda/etiologia , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Rim/efeitos dos fármacos , Rim/cirurgia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nefrectomia , Proteínas Recombinantes/farmacologia
6.
Sci Rep ; 6: 34265, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27677327

RESUMO

Acute kidney injury (AKI) is an important risk factor for incident chronic kidney disease (CKD). Clinical studies disclose that ensuing CKD progresses after functional recovery from AKI, but the underlying mechanisms remain illusive. Using a murine model representing AKI-CKD continuum, we show angiotensin II type 1a (AT1a) receptor signaling as one of the underlying mechanisms. Male adult CD-1 mice presented severe AKI with 20% mortality within 2 weeks after right nephrectomy and left renal ischemia-reperfusion injury. Despite functional recovery, focal tubular atrophy, interstitial cell infiltration and fibrosis, upregulation of genes encoding angiotensinogen and AT1a receptor were shown in kidneys 4 weeks after AKI. Thereafter mice manifested increase of blood pressure, albuminuria and azotemia progressively. Drinking water with or without losartan or hydralazine was administered to mice from 4 weeks after AKI. Increase of mortality, blood pressure, albuminuria, azotemia and kidney fibrosis was noted in mice with vehicle administration during the 5-month experimental period. On the contrary, these parameters in mice with losartan administration were reduced to the levels shown in control group. Hydralazine did not provide similar beneficial effect though blood pressure was controlled. These findings demonstrate that losartan can reduce ensuing CKD and mortality after functional recovery from AKI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...