Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0294514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165884

RESUMO

Atherosclerosis (AS) is a chronic inflammatory disease involving cell death and inflammatory responses. Pyroptosis, a newly discovered pro-inflammatory programmed cell death process, exacerbates inflammatory responses. However, the roles of cathepsin B (CTSB) in pyroptosis and AS remain unclear. To gain further insight, we fed ApoE-/- mice a high-fat diet to investigate the effects and mechanisms of CTSB overexpression and silencing on AS. We also explored the specific role of CTSB in vascular smooth muscle cells (VSMCs) in vitro. The study revealed that high-fat diet led to the formation of AS plaques, and CTSB was found to increase the AS plaque lesion area. Immunohistochemical and TUNEL/caspase-1 staining revealed the existence of pyroptosis in atherosclerotic plaques, particularly in VSMCs. In vitro studies, including Hoechst 33342/propidium iodide staining, a lactate dehydrogenase (LDH) release assay, detection of protein indicators of pyroptosis, and detection of interleukin-1ß (IL-1ß) in cell culture medium, demonstrated that oxidized low-density lipoprotein (ox-LDL) induced VSMC pyroptosis. Additionally, CTSB promoted VSMC pyroptosis. Ox-LDL increased the expression of CTSB, which in turn activated the NOD-like receptor protein 3 (NLRP3) inflammasome and promoted NLRP3 expression by facilitating nuclear factor kappa B (NF-κB) p65 nuclear translocation. This effect could be attenuated by the NF-κB inhibitor SN50. Our research found that CTSB not only promotes VSMC pyroptosis by activating the NLRP3 inflammasome, but also increases the expression of NLRP3.


Assuntos
Aterosclerose , Catepsina B , Placa Aterosclerótica , Animais , Camundongos , Aterosclerose/metabolismo , Catepsina B/metabolismo , Inflamassomos/metabolismo , Camundongos Knockout para ApoE , Músculo Liso Vascular/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Placa Aterosclerótica/patologia , Piroptose , Transdução de Sinais
2.
Biochem Pharmacol ; 220: 115996, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154546

RESUMO

Cardiac fibrosis is pivotal in the progression of numerous cardiovascular diseases. This phenomenon is hallmarked by an excessive deposition of ECM protein secreted by myofibroblasts, leading to increased myocardial stiffness. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease that belongs to the proprotein-converting enzyme family. It has emerged as a viable therapeutic target for reducing plasma low-density lipoprotein cholesterol. However, the exact mechanism via which PCSK9 impacts cardiac fibrosis remains unclear. In the present research, an increase in circulating PCSK9 protein levels was observed in individuals with myocardial infarction and rat models of myocardial infarction. Moreover, the inhibition of circulating PCSK9 in rats was found to reduce post-infarction fibrosis. In vitro experiments further demonstrated that overexpression of PCSK9 or stimulation by extracellular PCSK9 recombinant protein enhanced the transformation of cardiac fibroblasts to myofibroblasts. This process also elevated collagen Ⅰ, and Ⅲ, as well as α-SMA protein levels. However, these effects were countered when co-incubated with the STAT3 inhibitor S3I-201. This study suggests that PCSK9 may function as a novel regulator of myocardial fibrosis, primarily via the JAK2/STAT3 pathway.


Assuntos
Infarto do Miocárdio , Pró-Proteína Convertase 9 , Animais , Humanos , Ratos , Fibrose , Miofibroblastos/metabolismo , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo
3.
Nutr Metab (Lond) ; 18(1): 24, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663541

RESUMO

BACKGROUND: The purpose of this study was to explore the potential molecular targets of hyperlipidaemia and the related molecular mechanisms. METHODS: The microarray dataset of GSE66676 obtained from patients with hyperlipidaemia was downloaded. Weighted gene co-expression network (WGCNA) analysis was used to analyse the gene expression profile, and the royal blue module was considered to have the highest correlation. Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were implemented for the identification of genes in the royal blue module using the Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool (version 6.8; http://david.abcc.ncifcrf.gov ). A protein-protein interaction (PPI) network was established by using the online STRING tool. Then, several hub genes were identified by the MCODE and cytoHubba plug-ins in Cytoscape software. RESULTS: The significant module (royal blue) identified was associated with TC, TG and non-HDL-C. GO and KEGG enrichment analyses revealed that the genes in the royal blue module were associated with carbon metabolism, steroid biosynthesis, fatty acid metabolism and biosynthesis pathways of unsaturated fatty acids. SQLE (degree = 17) was revealed as a key molecule associated with hypercholesterolaemia (HCH), and SCD was revealed as a key molecule associated with hypertriglyceridaemia (HTG). RT-qPCR analysis also confirmed the above results based on our HCH/HTG samples. CONCLUSIONS: SQLE and SCD are related to hyperlipidaemia, and SQLE/SCD may be new targets for cholesterol-lowering or triglyceride-lowering therapy, respectively.

4.
Lipids Health Dis ; 19(1): 37, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32164735

RESUMO

BACKGROUND: The current research aimed to expound the genes and pathways that are involved in coronary artery disease (CAD) and ischaemic stroke (IS) and the related mechanisms. METHODS: Two array CAD datasets of (GSE66360 and GSE97320) and an array IS dataset (GSE22255) were downloaded. Differentially expressed genes (DEGs) were identified using the limma package. The online tool Database for Annotation, Visualization and Integrated Discovery (DAVID) (version 6.8; david.abcc.ncifcrf.gov) was used to annotate the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analyses of the DEGs. A protein-protein interaction (PPI) network was constructed by Cytoscape software, and then Molecular Complex Detection (MCODE) analysis was used to screen for hub genes. The hub genes were also confirmed by RT-qPCR and unconditional logistic regression analysis in our CAD and IS patients. RESULTS: A total of 20 common DEGs (all upregulated) were identified between the CAD/IS and control groups. Eleven molecular functions, 3 cellular components, and 49 biological processes were confirmed by GO enrichment analysis, and the 20 common upregulated DEGs were enriched in 21 KEGG pathways. A PPI network including 24 nodes and 68 edges was constructed with the STRING online tool. After MCODE analysis, the top 5 high degree genes, including Jun proto-oncogene (JUN, degree = 9), C-X-C motif chemokine ligand 8 (CXCL8, degree = 9), tumour necrosis factor (TNF, degree = 9), suppressor of cytokine signalling 3 (SOCS3, degree = 8) and TNF alpha induced protein 3 (TNFAIP3, degree = 8) were noted. RT-qPCR results demonstrated that the expression levels of CXCL8 were increased in IS patients than in normal participants and the expression levels of SOCS3, TNF and TNFAIP were higher in CAD/IS patients than in normal participants. Meanwhile, unconditional logistic regression analysis revealed that the incidence of CAD or IS was positively correlated with the CXCL8, SOCS3, TNF and TNFAIP3. CONCLUSIONS: The CXCL8, TNF, SOCS3 and TNFAIP3 associated with inflammation may serve as biomarkers for the diagnosis of CAD or IS. The possible mechanisms may involve the Toll-like receptor, TNF, NF-kappa B, cytokine-cytokine receptor interactions and the NOD-like receptor signalling pathways.


Assuntos
Biomarcadores/metabolismo , Isquemia Encefálica/metabolismo , Doença da Artéria Coronariana/metabolismo , Inflamação/metabolismo , Feminino , Humanos , Interleucina-8/metabolismo , Modelos Logísticos , Masculino , Mapeamento de Interação de Proteínas , Proto-Oncogene Mas , Reação em Cadeia da Polimerase em Tempo Real , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...