Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
bioRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38659755

RESUMO

Fish in the wild often contend with complex flows that are produced by natural and artificial structures. Research into fish interactions with turbulence often investigates metrics such as turbulence kinetic energy (TKE) or fish positional location, with less attention paid to the specific interactions between vortex organization and body swimming kinematics. Here we compare the swimming kinematics of rainbow trout ( Oncorhynchus mykiss ) holding station in flows produced by two different 3 x 5 cylinder arrays. We systematically utilized computational fluid dynamics to generate one array that produced a Kármán vortex street with high vortex periodicity and TKE (KVS array), and another that produced low periodicity and TKE, similar to a parallel vortex street (PVS array). The only difference in swimming kinematics between cylinder arrays was an increased tail beat amplitude in the KVS array. In both cylinder arrays, the tail beat frequency decreased and snout amplitude increased compared with the freestream. The center of mass amplitude was greater in the PVS array than in only the freestream, however, suggesting some buffeting of the body by the fluid. Notably, we did not observe Kármán gaiting in the KVS array as in previous studies. We hypothesize that this is because (1) vorticity was dissipated in the region where fish held station in this study and (2) cylinder arrays produced vortices that were in-line rather than staggered. These results are the first to quantify the kinematics and behavior of fishes swimming in the wake of multiple cylinder arrays, which has important implications for biomechanics, fluid dynamics, and fisheries management. SUMMARY STATEMENT: The swimming kinematics of rainbow trout are largely preserved across two, 3 x 5 cylinder array treatments that differed in vortex periodicity and turbulence kinetic energy.

2.
J Exp Biol ; 227(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38372042

RESUMO

Humans have been trying to understand animal behavior at least since recorded history. Recent rapid development of new technologies has allowed us to make significant progress in understanding the physiological and molecular mechanisms underlying behavior, a key goal of neuroethology. However, there is a tradeoff when studying animal behavior and its underlying biological mechanisms: common behavior protocols in the laboratory are designed to be replicable and controlled, but they often fail to encompass the variability and breadth of natural behavior. This Commentary proposes a framework of 10 key questions that aim to guide researchers in incorporating a rich natural context into their experimental design or in choosing a new animal study system. The 10 questions cover overarching experimental considerations that can provide a template for interspecies comparisons, enable us to develop studies in new model organisms and unlock new experiments in our quest to understand behavior.


Assuntos
Comportamento Animal , Animais , Comportamento Animal/fisiologia
3.
J Exp Biol ; 227(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38390692

RESUMO

Pectoral fins play a crucial role in fish locomotion. Despite fishes living in complex fluid environments that exist in rivers and tidal flows, the role of the pectoral fins in navigating turbulent flows is not well understood. This study investigated the kinematics and muscle activity of pectoral fins in rainbow trout as they held station in the unsteady flows behind a D-section cylinder. We observed two distinct pectoral fin behaviors, one during braking and the other during Kármán gaiting. These behaviors were correlated to whole-body movements in response to the hydrodynamic conditions of specific regions in the cylinder wake. Sustained fin extensions during braking, where the fin was held out to maintain its position away from the body and against the flow, were associated with the cessation of forward body velocity, where the fish avoided the suction region directly downstream of the cylinder. Transient fin extensions and retractions during Kármán gaiting controlled body movements in the cross-stream direction. These two fin behaviors had different patterns of muscle activity. All braking events required recruitment from both the abductor and adductor musculature to actively extend a pectoral fin. In contrast, over 50% of fin extension movements during Kármán gaiting proceed in the absence of muscle activity. We reveal that in unsteady fluid environments, pectoral fin movements are the result of a complex combination of passive and active mechanisms that deviate substantially from canonical labriform locomotion, the implications of which await further work on the integration of sensory and motor systems.


Assuntos
Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/fisiologia , Natação/fisiologia , Nadadeiras de Animais , Fenômenos Biomecânicos , Músculo Esquelético
4.
Proc Natl Acad Sci U S A ; 120(52): e2315515120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38117855

RESUMO

Hair cells are the principal sensory receptors of the vertebrate auditory system, where they transduce sounds through mechanically gated ion channels that permit cations to flow from the surrounding endolymph into the cells. The lateral line of zebrafish has served as a key model system for understanding hair cell physiology and development, often with the belief that these hair cells employ a similar transduction mechanism. In this study, we demonstrate that these hair cells are exposed to an unregulated external environment with cation concentrations that are too low to support transduction. Our results indicate that hair cell excitation is instead mediated by a substantially different mechanism involving the outward flow of anions. Further investigation of hair cell transduction in a diversity of sensory systems and species will likely yield deep insights into the physiology of these unique cells.


Assuntos
Sistema da Linha Lateral , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Sistema da Linha Lateral/fisiologia , Células Ciliadas Auditivas/fisiologia , Células Receptoras Sensoriais , Endolinfa
6.
Nat Metab ; 5(7): 1111-1126, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37349485

RESUMO

Regulation of CO2 fixation in cyanobacteria is important both for the organism and global carbon balance. Here we show that phosphoketolase in Synechococcus elongatus PCC7942 (SeXPK) possesses a distinct ATP-sensing mechanism, where a drop in ATP level allows SeXPK to divert precursors of the RuBisCO substrate away from the Calvin-Benson-Bassham cycle. Deleting the SeXPK gene increased CO2 fixation particularly during light-dark transitions. In high-density cultures, the Δxpk strain showed a 60% increase in carbon fixation and unexpectedly resulted in sucrose secretion without any pathway engineering. Using cryo-EM analysis, we discovered that these functions were enabled by a unique allosteric regulatory site involving two subunits jointly binding two ATP, which constantly suppresses the activity of SeXPK until the ATP level drops. This magnesium-independent ATP allosteric site is present in many species across all three domains of life, where it may also play important regulatory functions.


Assuntos
Dióxido de Carbono , Fotossíntese , Dióxido de Carbono/metabolismo , Fotossíntese/fisiologia , Ciclo do Carbono , Trifosfato de Adenosina/metabolismo
7.
J Neurosci Methods ; 391: 109850, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028520

RESUMO

BACKGROUND: Fish have adapted to a diversity of environments but the neural mechanisms underlying natural aquatic behaviors are not well known. NEW METHOD: We have developed a small, customizable AC differential amplifier and surgical procedures for recording multi-unit extracellular signals in the CNS of marine and freshwater fishes. RESULTS: Our minimally invasive amplifier allowed fish to orient to flow and respond to hydrodynamic and visual stimuli. We recorded activity in the cerebellum and optic tectum during these behaviors. COMPARISON WITH EXISTING METHODS: Our system is very low-cost, hydrodynamically streamlined, and capable of high-gain in order to allow for recordings from freely behaving, fast fishes in complex fluid environments. CONCLUSIONS: Our tethered approach allows access to record neural activity in a diversity of adult fishes in the lab, but can also be modified for data logging in the field.


Assuntos
Peixes , Natação , Animais , Natação/fisiologia , Peixes/fisiologia , Sistema Nervoso Central , Eletrodos Implantados , Água Doce
8.
iScience ; 26(2): 105995, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687314

RESUMO

The coronavirus nucleocapsid (N) protein is known to bind to nucleic acids and facilitate viral genome encapsulation. Here we report that the N protein can mediate RNA or DNA entering neighboring cells through ACE2-independent, receptor (STEAP2)-mediated endocytosis, and achieve gene expression. The effect is more pronounced for the N protein of wild-type SARS-CoV-2 than that of the Omicron variant and other human coronaviruses. This effect is enhanced by RANTES (CCL5), a chemokine induced by N protein, and lactate, a metabolite produced in hypoxia, to cause more damage. These findings might explain the clinical observations in SARS-CoV-2-infected cases. Moreover, the N protein-mediated function can be inhibited by N protein-specific monoclonal antibodies or p38 mitogen-activated protein kinase inhibitors. Since the N-protein-mediated nucleic acid endocytosis involves a receptor commonly expressed in many types of cells, our findings suggest that N protein may have an additional role in SARS-CoV-2 pathogenesis.

9.
Plant Cell ; 35(1): 24-66, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36222573

RESUMO

Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.


Assuntos
Mudança Climática , Ecossistema , Humanos , Produtos Agrícolas , Carbono , Secas
10.
Elife ; 112022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35708234

RESUMO

Animals can evolve dramatic sensory functions in response to environmental constraints, but little is known about the neural mechanisms underlying these changes. The Mexican tetra, Astyanax mexicanus, is a leading model to study genetic, behavioral, and physiological evolution by comparing eyed surface populations and blind cave populations. We compared neurophysiological responses of posterior lateral line afferent neurons and motor neurons across A. mexicanus populations to reveal how shifts in sensory function may shape behavioral diversity. These studies indicate differences in intrinsic afferent signaling and gain control across populations. Elevated endogenous afferent activity identified a lower response threshold in the lateral line of blind cavefish relative to surface fish leading to increased evoked potentials during hair cell deflection in cavefish. We next measured the effect of inhibitory corollary discharges from hindbrain efferent neurons onto afferents during locomotion. We discovered that three independently derived cavefish populations have evolved persistent afferent activity during locomotion, suggesting for the first time that partial loss of function in the efferent system can be an evolutionary mechanism for neural adaptation of a vertebrate sensory system.


Assuntos
Characidae , Sistema da Linha Lateral , Animais , Evolução Biológica , Cavernas , Characidae/fisiologia , Sistema da Linha Lateral/fisiologia , Locomoção
11.
Curr Biol ; 32(12): R666-R671, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35728550

RESUMO

Every spring a 600 lb Atlantic bluefin tuna travels over 3000 miles from Newfoundland to its spawning grounds in the Gulf of Mexico. That it does so on a meal of a couple of bluefish is nothing short of remarkable. Humans will likely never engineer such an efficient swimming machine. Of course, that has not stopped us from trying. We have achieved remarkable progress by following a strategy of inspiration by nature. At the same time, our fish-like robots often fall short of matching fish performance by a considerable margin. Despite our advances, we are still left asking the question: How do fish swim so well?


Assuntos
Natação , Atum , Animais , Terra Nova e Labrador , Reprodução , Estações do Ano
12.
Front Microbiol ; 13: 871624, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495658

RESUMO

The concerted effort for bioproduction of higher alcohols and other commodity chemicals has yielded a consortium of metabolic engineering techniques to identify targets to enhance performance of engineered microbial strains. Here, we demonstrate the use of metabolomics as a tool to systematically identify targets for improved production phenotypes in Escherichia coli. Gas chromatography/mass spectrometry (GC/MS) and ion-pair LC-MS/MS were performed to investigate metabolic perturbations in various 1-propanol producing strains. Two initial strains were compared that differ in the expression of the citramalate and threonine pathways, which hold a synergistic relationship to maximize production yields. While this results in increased productivity, no change in titer was observed when the threonine pathway was overexpressed beyond native levels. Metabolomics revealed accumulation of upstream byproducts, norvaline and 2-aminobutyrate, both of which are derived from 2-ketobutyrate (2KB). Eliminating the competing pathway by gene knockouts or improving flux through overexpression of glycolysis gene effectively increased the intracellular 2KB pool. However, the increase in 2KB intracellular concentration yielded decreased production titers, indicating toxicity caused by 2KB and an insufficient turnover rate of 2KB to 1-propanol. Optimization of alcohol dehydrogenase YqhD activity using an ribosome binding site (RBS) library improved 1-propanol titer (g/L) and yield (g/g of glucose) by 38 and 29% in 72 h compared to the base strain, respectively. This study demonstrates the use of metabolomics as a powerful tool to aid systematic strain improvement for metabolically engineered organisms.

13.
Bioinspir Biomim ; 17(4)2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35487201

RESUMO

Many aquatic animals swim by undulatory body movements and understanding the diversity of these movements could unlock the potential for designing better underwater robots. Here, we analyzed the steady swimming kinematics of a diverse group of fish species to investigate whether their undulatory movements can be represented using a series of interconnected multi-segment models, and if so, to identify the key factors driving the segment configuration of the models. Our results show that the steady swimming kinematics of fishes can be described successfully using parsimonious models, 83% of which had fewer than five segments. In these models, the anterior segments were significantly longer than the posterior segments, and there was a direct link between segment configuration and swimming kinematics, body shape, and Reynolds number. The models representing eel-like fishes with elongated bodies and fishes swimming at high Reynolds numbers had more segments and less segment length variability along the body than the models representing other fishes. These fishes recruited their anterior bodies to a greater extent, initiating the undulatory wave more anteriorly. Two shape parameters, related to axial and overall body thickness, predicted segment configuration with moderate to high success rate. We found that head morphology was a good predictor of its segment length. While there was a large variation in head segments, the length of tail segments was similar across all models. Given that fishes exhibited variable caudal fin shapes, the consistency of tail segments could be a result of an evolutionary constraint tuned for high propulsive efficiency. The bio-inspired multi-segment models presented in this study highlight the key bending points along the body and can be used to decide on the placement of actuators in fish-inspired robots, to model hydrodynamic forces in theoretical and computational studies, or for predicting muscle activation patterns during swimming.


Assuntos
Peixes , Natação , Animais , Evolução Biológica , Fenômenos Biomecânicos/fisiologia , Peixes/fisiologia , Hidrodinâmica , Natação/fisiologia
14.
Integr Comp Biol ; 61(6): 2191-2198, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34283241

RESUMO

Individual variation in morphology, physiology, and behavior has been a topic of great interest in the biological sciences. While scientists realize the importance of understanding diversity in individual phenotypes, historically the "minority" results (i.e., outlier observations or rare events) of any given experiment have been dismissed from further analysis. We need to reframe how we view "outliers" to improve our understanding of biology. These rare events are often treated as problematic or spurious, when they can be real rare events or individuals driving evolution in a population. It is our perspective that to understand what outliers can tell us in our data, we need to: (1) Change how we think about our data philosophically, (2) Fund novel collaborations using science "weavers" in our national funding agencies, and (3) Bridge long-term field and lab studies to reveal these outliers in action. By doing so, we will improve our understanding of variation and evolution. We propose that this shift in culture towards more integrative science will incorporate diverse teams, citizen scientists and local naturalists, and change how we teach future students.


Assuntos
Disciplinas das Ciências Biológicas , Filosofia , Animais , Humanos
15.
PNAS Nexus ; 1(4): pgac181, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36714842

RESUMO

SARS-CoV-2 continues to evolve, causing waves of the pandemic. Up to May 2022, 10 million genome sequences have accumulated, which are classified into five major variants of concern. With the growing number of sequenced genomes, analysis of the big dataset has become increasingly challenging. Here we developed systematic approaches based on sets of correlated single nucleotide variations (SNVs) for comprehensive subtyping and pattern recognition of transmission dynamics. The approach outperformed single-SNV and spike-centric scans. Moreover, the derived subtypes elucidate the relationship of signature SNVs and transmission dynamics. We found that different subtypes of the same variant, including Delta and Omicron exhibited distinct temporal trajectories. For example, some Delta and Omicron subtypes did not spread rapidly, while others did. We identified sets of characteristic SNVs that appeared to enhance transmission or decrease efficacy of antibodies for some subtypes. We also identified a set of SNVs that appeared to suppress transmission or increase viral sensitivity to antibodies. For the Omicron variant, the dominant type in the world, we identified the subtypes with enhanced and suppressed transmission in an analysis of eight million genomes as of March 2022 and further confirmed the findings in a later analysis of ten million genomes as of May 2022. While the "enhancer" SNVs exhibited an enriched presence on the spike protein, the "suppressor" SNVs are mainly elsewhere. Disruption of the SNV correlation largely destroyed the enhancer-suppressor phenomena. These results suggest the importance of fine subtyping of variants, and point to potential complex interactions among SNVs.

16.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34853171

RESUMO

Fishes exhibit an astounding diversity of locomotor behaviors from classic swimming with their body and fins to jumping, flying, walking, and burrowing. Fishes that use their body and caudal fin (BCF) during undulatory swimming have been traditionally divided into modes based on the length of the propulsive body wave and the ratio of head:tail oscillation amplitude: anguilliform, subcarangiform, carangiform, and thunniform. This classification was first proposed based on key morphological traits, such as body stiffness and elongation, to group fishes based on their expected swimming mechanics. Here, we present a comparative study of 44 diverse species quantifying the kinematics and morphology of BCF-swimming fishes. Our results reveal that most species we studied share similar oscillation amplitude during steady locomotion that can be modeled using a second-degree order polynomial. The length of the propulsive body wave was shorter for species classified as anguilliform and longer for those classified as thunniform, although substantial variability existed both within and among species. Moreover, there was no decrease in head:tail amplitude from the anguilliform to thunniform mode of locomotion as we expected from the traditional classification. While the expected swimming modes correlated with morphological traits, they did not accurately represent the kinematics of BCF locomotion. These results indicate that even fish species differing as substantially in morphology as tuna and eel exhibit statistically similar two-dimensional midline kinematics and point toward unifying locomotor hydrodynamic mechanisms that can serve as the basis for understanding aquatic locomotion and controlling biomimetic aquatic robots.


Assuntos
Peixes/anatomia & histologia , Peixes/fisiologia , Natação/fisiologia , Nadadeiras de Animais/anatomia & histologia , Animais , Biodiversidade , Fenômenos Biomecânicos/fisiologia , Comportamento Cooperativo , Peixes/classificação , Hidrodinâmica , Locomoção/fisiologia , Especificidade da Espécie
17.
PLoS Biol ; 19(10): e3001420, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34634044

RESUMO

Animals modulate sensory processing in concert with motor actions. Parallel copies of motor signals, called corollary discharge (CD), prepare the nervous system to process the mixture of externally and self-generated (reafferent) feedback that arises during locomotion. Commonly, CD in the peripheral nervous system cancels reafference to protect sensors and the central nervous system from being fatigued and overwhelmed by self-generated feedback. However, cancellation also limits the feedback that contributes to an animal's awareness of its body position and motion within the environment, the sense of proprioception. We propose that, rather than cancellation, CD to the fish lateral line organ restructures reafference to maximize proprioceptive information content. Fishes' undulatory body motions induce reafferent feedback that can encode the body's instantaneous configuration with respect to fluid flows. We combined experimental and computational analyses of swimming biomechanics and hair cell physiology to develop a neuromechanical model of how fish can track peak body curvature, a key signature of axial undulatory locomotion. Without CD, this computation would be challenged by sensory adaptation, typified by decaying sensitivity and phase distortions with respect to an input stimulus. We find that CD interacts synergistically with sensor polarization to sharpen sensitivity along sensors' preferred axes. The sharpening of sensitivity regulates spiking to a narrow interval coinciding with peak reafferent stimulation, which prevents adaptation and homogenizes the otherwise variable sensor output. Our integrative model reveals a vital role of CD for ensuring precise proprioceptive feedback during undulatory locomotion, which we term external proprioception.


Assuntos
Retroalimentação Sensorial/fisiologia , Sistema da Linha Lateral/fisiologia , Propriocepção/fisiologia , Potenciais de Ação/fisiologia , Adaptação Fisiológica , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Natação/fisiologia , Fatores de Tempo , Peixe-Zebra/fisiologia
18.
Integr Comp Biol ; 61(5): 1955-1965, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34415009

RESUMO

We propose the use of bio-inspired robotics equipped with soft sensor technologies to gain a better understanding of the mechanics and control of animal movement. Soft robotic systems can be used to generate new hypotheses and uncover fundamental principles underlying animal locomotion and sensory capabilities, which could subsequently be validated using living organisms. Physical models increasingly include lateral body movements, notably back and tail bending, which are necessary for horizontal plane undulation in model systems ranging from fish to amphibians and reptiles. We present a comparative study of the use of physical modeling in conjunction with soft robotics and integrated soft and hyperelastic sensors to monitor local pressures, enabling local feedback control, and discuss issues related to understanding the mechanics and control of undulatory locomotion. A parallel approach combining live animal data with biorobotic physical modeling promises to be beneficial for gaining a better understanding of systems in motion.


Assuntos
Robótica , Animais , Peixes , Locomoção , Modelos Biológicos , Músculos
19.
J Biomed Sci ; 28(1): 43, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098950

RESUMO

BACKGROUND: Coronavirus disease 19 (COVID-19) first appeared in the city of Wuhan, in the Hubei province of China. Since its emergence, the COVID-19-causing virus, SARS-CoV-2, has been rapidly transmitted around the globe, overwhelming the medical care systems in many countries and leading to more than 3.3 million deaths. Identification of immunological epitopes on the virus would be highly useful for the development of diagnostic tools and vaccines that will be critical to limiting further spread of COVID-19. METHODS: To find disease-specific B-cell epitopes that correspond to or mimic natural epitopes, we used phage display technology to determine the targets of specific antibodies present in the sera of immune-responsive COVID-19 patients. Enzyme-linked immunosorbent assays were further applied to assess competitive antibody binding and serological detection. VaxiJen, BepiPred-2.0 and DiscoTope 2.0 were utilized for B-cell epitope prediction. PyMOL was used for protein structural analysis. RESULTS: 36 enriched peptides were identified by biopanning with antibodies from two COVID-19 patients; the peptides 4 motifs with consensus residues corresponding to two potential B-cell epitopes on SARS-CoV-2 viral proteins. The putative epitopes and hit peptides were then synthesized for validation by competitive antibody binding and serological detection. CONCLUSIONS: The identified B-cell epitopes on SARS-CoV-2 may aid investigations into COVID-19 pathogenesis and facilitate the development of epitope-based serological diagnostics and vaccines.


Assuntos
COVID-19 , Epitopos de Linfócito B , Biblioteca de Peptídeos , SARS-CoV-2 , Proteínas Virais , COVID-19/genética , COVID-19/imunologia , Epitopos de Linfócito B/genética , Epitopos de Linfócito B/imunologia , Humanos , SARS-CoV-2/genética , SARS-CoV-2/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
20.
J Vis Exp ; (168)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33645560

RESUMO

Sensory systems gather cues essential for directing behavior, but animals must decipher what information is biologically relevant. Locomotion generates reafferent cues that animals must disentangle from relevant sensory cues of the surrounding environment. For example, when a fish swims, flow generated from body undulations is detected by the mechanoreceptive neuromasts, comprising hair cells, that compose the lateral line system. The hair cells then transmit fluid motion information from the sensor to the brain via the sensory afferent neurons. Concurrently, corollary discharge of the motor command is relayed to hair cells to prevent sensory overload. Accounting for the inhibitory effect of predictive motor signals during locomotion is, therefore, critical when evaluating the sensitivity of the lateral line system. We have developed an in vivo electrophysiological approach to simultaneously monitor posterior lateral line afferent neuron and ventral motor root activity in zebrafish larvae (4-7 days post fertilization) that can last for several hours. Extracellular recordings of afferent neurons are achieved using the loose patch clamp technique, which can detect activity from single or multiple neurons. Ventral root recordings are performed through the skin with glass electrodes to detect motor neuron activity. Our experimental protocol provides the potential to monitor endogenous or evoked changes in sensory input across motor behaviors in an intact, behaving vertebrate.


Assuntos
Sistema da Linha Lateral/inervação , Neurônios Aferentes/fisiologia , Natação/fisiologia , Peixe-Zebra/fisiologia , Animais , Eletrodos , Fenômenos Eletrofisiológicos , Larva/fisiologia , Neurônios Motores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...