Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiol Med ; 128(9): 1079-1092, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37486526

RESUMO

PURPOSE: Lung cancer has significant genetic and phenotypic heterogeneity, leading to poor prognosis. Radiomic features have emerged as promising predictors of the tumor phenotype. However, the role of underlying information surrounding the cancer remains unclear. MATERIALS AND METHODS: We conducted a retrospective study of 508 patients with NSCLC from three institutions. Radiomics models were built using features from six tumor regions and seven classifiers to predict three prognostically significant tumor phenotypes. The models were evaluated and interpreted by the mean area under the receiver operating characteristic curve (AUC) under nested cross-validation and Shapley values. The best-performing predictive models corresponding to six tumor regions and three tumor phenotypes were identified for further comparative analysis. In addition, we designed five experiments with different voxel spacing to assess the sensitivity of the experimental results to the spatial resolution of the voxels. RESULTS: Our results demonstrated that models based on 2D, 3D, and peritumoral region features yielded mean AUCs and 95% confidence intervals of 0.759 and [0.747-0.771] for lymphovascular invasion, 0.889 and [0.882-0.896] for pleural invasion, and 0.839 and [0.829-0.849] for T-staging in the testing cohort, which was significantly higher than all other models. Similar results were obtained for the model combining the three regional features at five voxel spacings. CONCLUSION: Our study revealed the predictive role of the developed methods with multi-regional features for the preoperative assessment of prognostic factors in NSCLC. The analysis of different voxel spacing and model interpretability strengthens the experimental findings and contributes to understanding the biological significance of the radiological phenotype.

2.
Comput Intell Neurosci ; 2022: 7799654, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36419508

RESUMO

Automated guided vehicles (AGVs) are popular subsets of robots that come in various shapes and sizes. The group's use in the industry ranges from applications for carrying pallets, carts, and utensils to helping the elderly or transporting medicine to hospitals. Even recently, they have been used in libraries to carry books on shelves. The main part of an AGV includes its body, motor, driver, processor, and sensors, which are more or less the same in all types of AGVs, and addons vary depending on the application and the work environment. The part that affects AGV performance is the control strategy, to which researchers have shown different approaches. Using various techniques and simulations to obtain a model is the key and can help to improve and evaluate the performance of the strategy of the robot. In this study, based on the actual design of the AGV system, all data and components are described, and the simulation is performed in MATLAB software. Then, for controlling the platform based on the PID controller tuning, four methods of Ziegler Nichols, empirical, Particle Swarm Optimization (PSO), and Beetle Antennae Searching (BAS) (optimizer) are discussed, and the results are compared in the four paths including the circle, ellipse, Spiral and 8-shaped paths by observing and testing the tuned PID parameters. Finally, a series of subsequent experiences were carried out in CoppeliaSim (VREP) as a famous robot simulator to overcome the environmental constraints for the same paths that were used in Matlab based on the extracted PID values. Based on the results, the empirical methods, PSO, and BAS errors are very close together. But in general, the BAS algorithm is the fastest, and the PSO had better performance. In general, the maximum error is linked to the path of 8 shapes and the minimum is related to circle shape one. Finally, the analysis of results in different paths in both simulators shows the same results. Therefore, concerning the limited test on the real platform and using the PID coefficients obtained from the simulation shows the model's ability for the researchers in robotic research.


Assuntos
Besouros , Animais , Simulação por Computador , Algoritmos , Software , Indústrias
3.
Crit Rev Oncol Hematol ; 179: 103823, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152912

RESUMO

Radiomics and deep learning (DL) hold transformative promise and substantial and significant advances in oncology; however, most methods have been tested in retrospective or simulated settings. There is considerable interest in the biomarker validation, clinical utility, and methodological robustness of these studies and their deployment in real-world settings. This review summarizes the characteristics of studies, the level of prospective validation, and the overview of research on different clinical endpoints. The discussion of methodological robustness shows the potential for independent external replication of prospectively reported results. These in-depth analyses further describe the barriers limiting the translation of radiomics and DL into primary care options and provide specific recommendations regarding clinical deployment. Finally, we propose solutions for integrating novel approaches into the treatment environment to unravel the critical process of translating AI models into the clinical routine and explore strategies to improve personalized medicine.


Assuntos
Aprendizado Profundo , Biomarcadores , Humanos , Estudos Retrospectivos
4.
Front Oncol ; 12: 773840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251962

RESUMO

The high-throughput extraction of quantitative imaging features from medical images for the purpose of radiomic analysis, i.e., radiomics in a broad sense, is a rapidly developing and emerging research field that has been attracting increasing interest, particularly in multimodality and multi-omics studies. In this context, the quantitative analysis of multidimensional data plays an essential role in assessing the spatio-temporal characteristics of different tissues and organs and their microenvironment. Herein, recent developments in this method, including manually defined features, data acquisition and preprocessing, lesion segmentation, feature extraction, feature selection and dimension reduction, statistical analysis, and model construction, are reviewed. In addition, deep learning-based techniques for automatic segmentation and radiomic analysis are being analyzed to address limitations such as rigorous workflow, manual/semi-automatic lesion annotation, and inadequate feature criteria, and multicenter validation. Furthermore, a summary of the current state-of-the-art applications of this technology in disease diagnosis, treatment response, and prognosis prediction from the perspective of radiology images, multimodality images, histopathology images, and three-dimensional dose distribution data, particularly in oncology, is presented. The potential and value of radiomics in diagnostic and therapeutic strategies are also further analyzed, and for the first time, the advances and challenges associated with dosiomics in radiotherapy are summarized, highlighting the latest progress in radiomics. Finally, a robust framework for radiomic analysis is presented and challenges and recommendations for future development are discussed, including but not limited to the factors that affect model stability (medical big data and multitype data and expert knowledge in medical), limitations of data-driven processes (reproducibility and interpretability of studies, different treatment alternatives for various institutions, and prospective researches and clinical trials), and thoughts on future directions (the capability to achieve clinical applications and open platform for radiomics analysis).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...