Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(25): e2309575, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38279627

RESUMO

Maneuver of conducting polymers (CPs) into lightweight hydrogels can improve their functional performances in energy devices, chemical sensing, pollutant removal, drug delivery, etc. Current approaches for the manipulation of CP hydrogels are limited, and they are mostly accompanied by harsh conditions, tedious processing, compositing with other constituents, or using unusual chemicals. Herein, a two-step route is introduced for the controllable fabrication of CP hydrogels in ambient conditions, where gelation of the shape-anisotropic nano-oxidants followed by in-situ oxidative polymerization leads to the formation of polyaniline (PANI) and polypyrrole hydrogels. The method is readily coupled with different approaches for materials processing of PANI hydrogels into varied shapes, including spherical beads, continuous wires, patterned films, and free-standing objects. In comparison with their bulky counterparts, lightweight PANI items exhibit improved properties when those with specific shapes are used as electrodes for supercapacitors, gas sensors, or dye adsorbents. The current study therefore provides a general and controllable approach for the implementation of CP into hydrogels of varied external shapes, which can pave the way for the integration of lightweight CP structures with emerging functional devices.

2.
Small ; 19(35): e2301493, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093544

RESUMO

Porous materials with multiple hierarchy levels can be useful as lightweight engineering structures, biomedical implants, flexible functional devices, and thermal insulators. Numerous routes have integrated bottom-up and top-down approaches for the generation of engineering materials with lightweight nature, complex structures, and excellent mechanical properties. It nonetheless remains challenging to generate ultralight porous materials with hierarchical architectures and multi-functionality. Here, the combined strategy based on Pickering emulsions and additive manufacturing leads to the development of ultralight conducting polymer foams with hierarchical pores and multifunctional performance. Direct writing of the emulsified inks consisting of the nano-oxidant-hydrated vanadium pentoxide nanowires-generated free-standing scaffolds, which are stabilized by the interfacial organization of the nanowires into network structures. The following in situ oxidative polymerization transforms the nano-oxidant scaffolds into foams consisting of a typical conducting polymer-polyaniline. The lightweight polyaniline foams featured by hierarchical pores and high surface areas show excellent performances in the applications of supercapacitor electrodes, planar micro-supercapacitors, and gas sensors. This emerging technology demonstrates the great potential of a combination of additive manufacturing with complex fluids for the generation of functional solids with lightweight nature and adjustable structure-function relationships.

3.
Nat Commun ; 14(1): 64, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36599865

RESUMO

Load bearing/energy storage integrated devices (LEIDs) allow using structural parts to store energy, and thus become a promising solution to boost the overall energy density of mobile energy storage systems, such as electric cars and drones. Herein, with a new high-strength solid electrolyte, we prepare a practical high-performance load-bearing/energy storage integrated electrochemical capacitors with excellent mechanical strength (flexural modulus: 18.1 GPa, flexural strength: 160.0 MPa) and high energy storage ability (specific capacitance: 32.4 mF cm-2, energy density: 0.13 Wh m-2, maximum power density: 1.3 W m-2). We design and compare two basic types of multilayered structures for LEID, which significantly enhance the practical bearing ability and working flexibility of the device. Besides, we also demonstrate the excellent processability of the LEID, by forming them into curved shapes, and secondarily machining and assembling them into complex structures without affecting their energy storage ability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...