Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 182: 126-138, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38735374

RESUMO

The limited mechanical properties of pure Zn, such as its low strength and ductility, hinder its application as a material for biodegradable implants. Addressing this challenge, the current study focuses on the development of biodegradable Zn-based alloys, employing innovative alloy design and processing strategies. Here, alloys with compositions ranging from 0.02 to 0.10 weight percent (wt%) Cu, 1.22 to 1.80 wt% Ti, and 0.04 to 0.06 wt% Mo were produced utilizing a high-throughput gradient continuous casting process. This study highlights three specific alloys: Zn1.82Cu0.10Ti0.05Mo (HR8), Zn0.08Cu1.86Ti0Mo (HR7), and Zn1.26Cu0.13Ti0.06Mo (HR6), which were extensively evaluated for their microstructure, mechanical properties, electrochemical performance, potential as bioimplants, and cytotoxicity. These alloys were found to exhibit enhanced mechanical strength, optimal degradation rates, and superior biocompatibility, evidenced by in-vivo experiments with SD rats, positioning them as promising candidates for medical implants. This research not only introduces a significant advancement in biodegradable alloy development but also proposes an efficient method for their production, marking a pivotal step forward in biomedical engineering. STATEMENT OF SIGNIFICANCE: The limited mechanical properties of pure Zn have hindered its application in biodegradable implants. Our research primarily focuses on the alloy design and process strategies of biodegradable Zn-based alloys. We explore the ZnCuxTixMox alloys. This study introduces a high-throughput experimental approach for efficient screening of multi-component alloy systems with optimal properties. The ZnCuxTixMox alloys were designed and processed through gradient continuous casting, followed by homogenization and hot rolling. Our findings indicate that the Zn1.82Cu0.10Ti0.05Mo alloy demonstrates superior tensile, mechanical, and corrosion properties post hot rolling. The study suggests that Zn0.13Cu1.26Ti0.06Mo, Zn0.08Cu1.86Ti0Mo, and Zn1.82Cu0.10Ti0.05Mo alloys hold significant potential as biodegradable materials.


Assuntos
Ligas , Cobre , Molibdênio , Ratos Sprague-Dawley , Zinco , Ligas/química , Animais , Zinco/química , Molibdênio/química , Cobre/química , Teste de Materiais , Ratos , Titânio/química , Implantes Absorvíveis , Materiais Biocompatíveis/química , Masculino
2.
Materials (Basel) ; 17(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38673184

RESUMO

This research examines the behavior of electrochemical passivation and the chemistry of surface films on 654SMO super austenitic stainless steel and C276 nickel-based alloy in simulated condensates from flue gas desulfurization in power plant chimneys. The findings indicate that the resistance to polarization of the protective film on both materials initially rises and then falls with either time spent in the solution or the potential of anodic polarization. Comparatively, 654SMO exhibits greater polarization resistance than C276, indicating its potential suitability as a chimney lining material. Mott-Schottky analysis demonstrates that the density of donors in the passive film formed on 654SMO exceeds that on C276, potentially due to the abundance of Fe oxide in the passive film, which exhibits the characteristics of an n-type semiconductor. The primary components of the passive films on both materials are Fe oxides and Cr oxides. The formation of a thin passive film on C276 in the simulated condensates is a result of the low Gibbs free energy of nickel oxide and low Cr content. The slower diffusion coefficient of point defects leads to the development of a thicker and more compact passive film on the surface of 654SMO.

3.
Materials (Basel) ; 14(14)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34300959

RESUMO

In order to evaluate the effect of secondary cold reduction rate on the drawing performance of double reduction tinplate and explain the mechanism, a detailed investigation into the microstructural characterization, dissolved carbon atoms, texture characterization by an X-ray powder diffractometer (XRD) and electron backscatter diffraction (EBSD), and earing behavior were carried out with different secondary cold reduction rates of 15%, 20% and 25% for double reduction tinplate. The experimental results indicate that 15% secondary cold reduction rate could obtain a better drawing performance because there are no holes and cracks at the microstructure, and the content of dissolved carbon atom is relatively low; at the same time, it has a better texture distribution and low earing coefficient.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...