Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Sci ; 19(2): 658-674, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632450

RESUMO

The discovery of the necroptosis, a form of regulated necrosis that is mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed-lineage kinase domain-like pseudokinase (MLKL), represents a major breakthrough that has dramatically altered the conception of necrosis - traditionally thought of as uncontrolled cell death - in various human diseases. Retinal cell death is a leading cause of blindness and has been identified in most retinal diseases, e.g., age-related macular degeneration, glaucoma, retinal detachment, retinitis pigmentosa, etc. Increasing evidence demonstrates that retinal degenerative diseases also share a common mechanism in necroptosis. Exacerbated necroptotic cell death hinders the treatment for retinal degenerative diseases. In this review, we highlight recent advances in identifying retinal necroptosis, summarize the underlying mechanisms of necroptosis in retinal degenerative diseases, and discuss potential anti-necroptosis strategies, such as selective inhibitors and chemical agents, for treating retinal degenerative diseases.


Assuntos
Necroptose , Degeneração Retiniana , Humanos , Proteínas Quinases/metabolismo , Necroptose/efeitos dos fármacos , Degeneração Retiniana/tratamento farmacológico , Degeneração Retiniana/patologia
2.
Curr Med Sci ; 43(1): 166-172, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36255664

RESUMO

OBJECTIVE: Numerous studies have indicated that excitatory amino acid toxicity, such as glutamate toxicity, is involved in glaucoma. In addition, excessive glutamate can lead to an intracellular calcium overload, resulting in regulated necrosis. Our previous studies have found that the calpastatin (CAST)-calpain pathway plays an important role in retinal neuron-regulated necrosis after glutamate injury. Although inhibition of the calpain pathway can decrease regulated necrosis, necrotic cells remain. It has been suggested that there are other molecules that participate in retinal neuron-regulated necrosis. CAST is an important regulator of dynamin-related protein 1 (Drp1)-mediated mitochondrial defects. Thus, the aim of this study was to determine whether the CAST-Drp1 pathway may be an underlying signaling axis in neuron-regulated necrosis. METHODS: Using cultured retinal neurons and in an in-vivo glaucoma model induced by glutamate overload, members of the CAST-Drp1 pathway were assessed by immunofluorescence, Western blotting, Phos-tagTM SDS-PAGE, and co-immunoprecipitation assays. Moreover, the black and white box test was performed on the rats. RESULTS: We found that more retinal neuron-regulated necrosis and Drp1 activation as well as lower CAST levels were present in the glutamate-induced glaucoma model. Rats with glutamate-induced glaucoma exhibited impaired visual function. We also observed retinal neuron-regulated necrosis and Drp1 activity decreased, and impaired vision recovered after CAST active peptide application, indicating that the CAST-Drp1 pathway plays a critical role in retinal neuron-regulated necrosis and visual function. CONCLUSION: The results of this study indicate that the CAST-Drp1 pathway protects against retinal neuron-regulated necrosis, which may expand the therapeutic targets for the treatment of neurodegenerative disorders involving dysfunction of glutamate metabolism, such as glaucoma.


Assuntos
Glaucoma , Neurônios Retinianos , Animais , Ratos , Calpaína/metabolismo , Dinaminas/metabolismo , Glaucoma/metabolismo , Ácido Glutâmico/farmacologia , Necrose , Neurônios Retinianos/metabolismo
3.
Front Pharmacol ; 12: 716394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34349659

RESUMO

Methamphetamine (METH) is one of the most widely abused synthetic drugs in the world. The users generally present hyperthermia (HT) and psychiatric symptoms. However, the mechanisms involved in METH/HT-induced neurotoxicity remain elusive. Here, we investigated the role of heat shock protein 90 alpha (HSP90α) in METH/HT (39.5°C)-induced necroptosis in rat striatal neurons and an in vivo rat model. METH treatment increased core body temperature and up-regulated LDH activity and the molecular expression of canonical necroptotic factors in the striatum of rats. METH and HT can induce necroptosis in primary cultures of striatal neurons. The expression of HSP90α increased following METH/HT injuries. The specific inhibitor of HSP90α, geldanamycin (GA), and HSP90α shRNA attenuated the METH/HT-induced upregulation of receptor-interacting protein 3 (RIP3), phosphorylated RIP3, mixed lineage kinase domain-like protein (MLKL), and phosphorylated MLKL. The inhibition of HSP90α protected the primary cultures of striatal neurons from METH/HT-induced necroptosis. In conclusion, HSP90α plays an important role in METH/HT-induced neuronal necroptosis and the HSP90α-RIP3 pathway is a promising therapeutic target for METH/HT-induced neurotoxicity in the striatum.

4.
Front Cell Dev Biol ; 9: 634690, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748119

RESUMO

Over the past few years, the field of regulated cell death continues to expand and novel mechanisms that orchestrate multiple regulated cell death pathways are being unveiled. Meanwhile, researchers are focused on targeting these regulated pathways which are closely associated with various diseases for diagnosis, treatment, and prognosis. However, the complexity of the mechanisms and the difficulties of distinguishing among various regulated types of cell death make it harder to carry out the work and delay its progression. Here, we provide a systematic guideline for the fundamental detection and distinction of the major regulated cell death pathways following morphological, biochemical, and functional perspectives. Moreover, a comprehensive evaluation of different assay methods is critically reviewed, helping researchers to make a reliable selection from among the cell death assays. Also, we highlight the recent events that have demonstrated some novel regulated cell death processes, including newly reported biomarkers (e.g., non-coding RNA, exosomes, and proteins) and detection techniques.

5.
Neurotox Res ; 30(3): 392-406, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27194525

RESUMO

N-acetyl-leucyl-leucyl-norleucinal (ALLN), an inhibitor of proteasomes and calpain, is widely used to reduce proteasomes or calpain-mediated cell death in rodents. However, ALLN is toxic to retinal neurons to some extent. At the concentration of 10 µM, ALLN is non-toxic to cortical neurons, but induces cell death of retinal neurons in vitro. The tolerance concentration of ALLN for retinal neurons is unclear, and the precise mechanism of cell death induced by ALLN remains elusive. In this study, we investigated the toxic effect of ALLN on primary retinal neurons. The 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed no significant changes of cell viability at 1 µM but decreased cell viability after treatment of ALLN at 2.5, 5, and 7.5 µM. Lactate dehydrogenase (LDH) release was highly elevated and propidium iodide (PI)-positive cells were significantly increased at 2.5, 5, and 7.5 µM after all treatment times. Moreover, the protein levels of caspase-3 were up-regulated at 5 and 7.5 µM after 12 and 24 h of ALLN treatment. The ratio of Bax/Bcl-2 was raised and Annexin V-positive cells were increased at 5 and 7.5 µM after 12 and 24 h of ALLN treatment. However, there were no significant changes in either the ratio of microtubule-associated protein 1 light chain 3 (LC3) II/LC3 I or monodansylcadaverine (MDC) staining. Our data clearly show that at the concentrations equal to and higher than 2.5 µM, ALLN may induce cell death of primary retinal neurons by necrosis and apoptosis, but not autophagy. These suggest that primary retinal neurons are more susceptible to ALLN treatment and provide a possible mechanism for the cell death of ALLN-sensitive cells in ALLN injury.


Assuntos
Leupeptinas/toxicidade , Neurônios Retinianos/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Western Blotting , Caspase 3/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Imunofluorescência , L-Lactato Desidrogenase/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Necrose/induzido quimicamente , Necrose/metabolismo , Necrose/patologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos Sprague-Dawley , Neurônios Retinianos/metabolismo , Neurônios Retinianos/patologia , Fatores de Tempo , Proteína X Associada a bcl-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...