Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 19(8): 3109-3122, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32567865

RESUMO

The decline of clinically effective antibiotics has made it necessary to develop more effective antimicrobial agents, especially for refractory biofilm-related infections. Silver nanoparticles (AgNPs) are a new type of antimicrobial agent that can eradicate biofilms and reduce bacterial resistance, but its anti-biofilm mechanism has not been elucidated. In this study, we investigated the molecular mechanism of AgNPs against multidrug-resistant Pseudomonas aeruginosa by means of anti-biofilm tests, scanning electron microscopy (SEM), and tandem mass tag (TMT)-labeled quantitative proteomics. The results of anti-biofilm tests demonstrated that AgNPs inhibited the formation of P. aeruginosa biofilm and disrupted its preformed biofilm. SEM showed that when exposed to AgNPs, the structure of the P. aeruginosa biofilm was destroyed, along with significant reduction of its biomass. TMT-labeled quantitative proteomic analysis revealed that AgNPs could defeat the P. aeruginosa biofilm in multiple ways by inhibiting its adhesion and motility, stimulating strong oxidative stress response, destroying iron homeostasis, blocking aerobic and anaerobic respiration, and affecting quorum sensing systems. Our findings offer a new insight into clarifying the mechanism of AgNPs against biofilms, thus providing a theoretical basis for its clinical application.


Assuntos
Nanopartículas Metálicas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , Proteômica , Prata/farmacologia
2.
Int J Nanomedicine ; 14: 1469-1487, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30880959

RESUMO

BACKGROUND: The threat of drug-resistant Pseudomonas aeruginosa requires great efforts to develop highly effective and safe bactericide. OBJECTIVE: This study aimed to investigate the antibacterial activity and mechanism of silver nanoparticles (AgNPs) against multidrug-resistant P. aeruginosa. METHODS: The antimicrobial effect of AgNPs on clinical isolates of resistant P. aeruginosa was assessed by minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). In multidrug-resistant P. aeruginosa, the alterations of morphology and structure were observed by the transmission electron microscopy (TEM); the differentially expressed proteins were analyzed by quantitative proteomics; the production of reactive oxygen species (ROS) was assayed by H2DCF-DA staining; the activity of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was chemically measured and the apoptosis-like effect was determined by flow cytometry. RESULTS: Antimicrobial tests revealed that AgNPs had highly bactericidal effect on the drug-resistant or multidrug-resistant P. aeruginosa with the MIC range of 1.406-5.625 µg/mL and the MBC range of 2.813-5.625 µg/mL. TEM showed that AgNPs could enter the multidrug-resistant bacteria and impair their morphology and structure. The proteomics quantified that, in the AgNP-treated bacteria, the levels of SOD, CAT, and POD, such as alkyl hydroperoxide reductase and organic hydroperoxide resistance protein, were obviously high, as well as the significant upregulation of low oxygen regulatory oxidases, including cbb3-type cytochrome c oxidase subunit P2, N2, and O2. Further results confirmed the excessive production of ROS. The antioxidants, reduced glutathione and ascorbic acid, partially antagonized the antibacterial action of AgNPs. The apoptosis-like rate of AgNP-treated bacteria was remarkably higher than that of the untreated bacteria (P<0.01). CONCLUSION: This study proved that AgNPs could play antimicrobial roles on the multidrug-resistant P. aeruginosa in a concentration- and time-dependent manner. The main mechanism involves the disequilibrium of oxidation and antioxidation processes and the failure to eliminate the excessive ROS.


Assuntos
Antibacterianos/administração & dosagem , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/química , Antibacterianos/química , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento
3.
Exp Biol Med (Maywood) ; 242(12): 1227-1233, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28343438

RESUMO

Human cytomegalovirus (HCMV) dormant infection can alter the expression of the hosts' microRNAs (miRNAs) and impact on the regulation of target genes. To investigate the differentially expressed miRNAs induced by HCMV in human glioma U251 cells, a comprehensive miRNA screen was performed. As a result, 19 up-regulated and 14 down-regulated miRNAs were determined. Of these, hsa-miR-27b (miR-27b) attracted our attention. MiR-27b levels in U251 cells increased 7.70-fold, 8.64-fold, and 4.78-fold, respectively, post 24 h, 48 h, and 72 h HCMV infection, compared to those in the mimic-infected cells, and this up-regulation was further confirmed by quantitative RT-PCR. The bioinformatic analyses show that miR-27b targets engrailed-2 (EN2) gene; however, the effect of miR-27b on EN2 is rarely encountered. In this study, we initially conducted dual luciferase assay to validate the target function of miR-27b on EN2. The results manifested that EN2 is a novel target of miR-27b, which could directly target the 3' untranslated region (3'-UTR) of the gene. We further found that the miR-27b transfected glioma U251 cells exhibited longer cell bodies with more synapses and multiple-angle shapes; moreover, Western blot detection revealed that the EN2 protein levels in these cells were significantly low. In conclusion, our study originally reports the up-regulation of miR-27b in HCMV-infected glioma cells. Our study also provides the first experimental evidence that miR-27b could affect glioma cells' growth, target EN2 and inhibit its expression in glioma cells. Our data indicate that miR-27b may be related to the development of neurological disorders with HCMV infection. The newly identified miR-27b/EN2 signal pathway may provide new insights into the glioma pathogenesis and a novel target for glioma therapy. Impact statement Our study is the first to demonstrate that the HCMV infection could alter the expression of cellular microRNAs of the host glioma cells, which may develop an understanding of the pathogenesis of the HCMV infection in the microRNA level. Recently, HCMV infection and engrailed-2 have been reported to be related to the autism spectrum disorder (ASD). In this study, we confirmed that engrailed-2 is the target of hsa-miR-27b. As far as we know, our findings of the hsa-miR-27b up-regulation in the HCMV-infected glioma cells, targeting engrailed-2 and inhibiting its expression have never been reported or documented. Our data indicate that miR-27b may be related to the development of neurological disorders with the HCMV infection. The newly identified miR-27b/EN2 signal pathway may provide new insights into the glioma pathogenesis and a novel target for glioma therapy.


Assuntos
Neoplasias Encefálicas/virologia , Infecções por Citomegalovirus/complicações , Regulação Neoplásica da Expressão Gênica/fisiologia , Glioma/virologia , Proteínas de Homeodomínio/biossíntese , MicroRNAs/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Glioma/genética , Proteínas de Homeodomínio/genética , Humanos , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...