Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 15(8)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37632102

RESUMO

RNA vaccines, including conventional messenger RNA (mRNA) vaccines, circular RNA (circRNA) vaccines, and self-amplifying RNA (saRNA) vaccines, have ushered in a promising future and revolutionized vaccine development. The success of mRNA vaccines in combating the COVID-19 pandemic caused by the SARS-CoV-2 virus that emerged in 2019 has highlighted the potential of RNA vaccines. These vaccines possess several advantages, such as high efficacy, adaptability, simplicity in antigen design, and the ability to induce both humoral and cellular immunity. They also offer rapid and cost-effective manufacturing, flexibility to target emerging or mutant pathogens and a potential approach for clearing immunotolerant microbes by targeting bacterial or parasitic survival mechanisms. The self-adjuvant effect of mRNA-lipid nanoparticle (LNP) formulations or circular RNA further enhances the potential of RNA vaccines. However, some challenges need to be addressed. These include the technology's immaturity, high research expenses, limited duration of antibody response, mRNA instability, low efficiency of circRNA cyclization, and the production of double-stranded RNA as a side product. These factors hinder the widespread adoption and utilization of RNA vaccines, particularly in developing countries. This review provides a comprehensive overview of mRNA, circRNA, and saRNA vaccines for infectious diseases while also discussing their development, current applications, and challenges.


Assuntos
COVID-19 , Vacina Antivariólica , Humanos , RNA Circular , Pandemias , COVID-19/prevenção & controle , SARS-CoV-2/genética , RNA Mensageiro , RNA de Cadeia Dupla
2.
PLoS Genet ; 19(2): e1010628, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36763670

RESUMO

Temperature greatly affects numerous biological processes in all organisms. How multicellular organisms respond to and are impacted by hypothermic stress remains elusive. Here, we found that cold-warm stimuli induced depletion of the RNA exosome complex in the nucleoli but enriched it in the nucleoplasm. To further understand the function and mechanism of cold-warm stimuli, we conducted forward genetic screening and identified ZTF-7, which is required for RNA exosome depletion from nucleoli upon transient cold-warm exposure in C. elegans. ZTF-7 is a putative ortholog of human ZNF277 that may contribute to language impairments. Immunoprecipitation followed by mass spectrometry (IP-MS) found that ZTF-7 interacted with RPS-2, which is a ribosomal protein of the small subunit and participates in pre-rRNA processing. A partial depletion of RPS-2 and other proteins of the small ribosomal subunit blocked the cold-warm stimuli-induced reduction of exosome subunits from the nucleoli. These results established a novel mechanism by which C. elegans responds to environmental cold-warm exposure.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Temperatura Baixa , Temperatura , Ligação Proteica
3.
Nucleic Acids Res ; 49(16): 9194-9210, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34365510

RESUMO

Eukaryotic cells express a wide variety of endogenous small regulatory RNAs that function in the nucleus. We previously found that erroneous rRNAs induce the generation of antisense ribosomal siRNAs (risiRNAs) which silence the expression of rRNAs via the nuclear RNAi defective (Nrde) pathway. To further understand the biological roles and mechanisms of this class of small regulatory RNAs, we conducted forward genetic screening to identify factors involved in risiRNA generation in Caenorhabditis elegans. We found that risiRNAs accumulated in the RNA exosome mutants. risiRNAs directed the association of NRDE proteins with pre-rRNAs and the silencing of pre-rRNAs. In the presence of risiRNAs, NRDE-2 accumulated in the nucleolus and colocalized with RNA polymerase I. risiRNAs inhibited the transcription elongation of RNA polymerase I by decreasing RNAP I occupancy downstream of the RNAi-targeted site. Meanwhile, exosomes mislocalized from the nucleolus to nucleoplasm in suppressor of siRNA (susi) mutants, in which erroneous rRNAs accumulated. These results established a novel model of rRNA surveillance by combining ribonuclease-mediated RNA degradation with small RNA-directed nucleolar RNAi system.


Assuntos
RNA Ribossômico/metabolismo , RNA Interferente Pequeno/metabolismo , Elongação da Transcrição Genética , Animais , Caenorhabditis elegans , Nucléolo Celular/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Exossomos/genética , Exossomos/metabolismo , Inativação Gênica , Mutação , RNA Ribossômico/genética , RNA Interferente Pequeno/genética
4.
G3 (Bethesda) ; 8(8): 2697-2707, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-29950430

RESUMO

Rearranged chromosomes have been applied to construct genetic balancers to manipulate essential genes in C. elegans Although much effort has been put into constructing balancer chromosomes, approximately 6% (map units) of the C. elegans genome has not been covered, and this area lies mostly in pairing centers (PCs). Here, we developed a method for conditional chromosomal engineering through combinatorial use of the CRISPR/Cas9 and Cre/LoxP technologies. Functional DNA fragments containing LoxP sequences were inserted into designated genomic loci using a modified counterselection (cs)-CRISPR method. Then, heat-shock-induced Cre recombinase induced an inversion of the chromosomal region between the two LoxP sites. The chromosomal inversions were subsequently detected by the appearance of pharyngeal GFP. Through this method, we have successfully generated several chromosomal inversion lines, providing valuable resources for studying essential genes in pairing centers.


Assuntos
Sistemas CRISPR-Cas , Inversão Cromossômica , Edição de Genes/métodos , Marcação de Genes/métodos , Animais , Caenorhabditis elegans/genética , Integrases/genética , Integrases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...