Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 80: 129108, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36538993

RESUMO

For the past two decades, BTK a tyrosine kinase and member of the Tec family has been a drug target of significant interest due to its potential to selectively treat various B cell-mediated diseases such as CLL, MCL, RA, and MS. Owning to the challenges encountered in identifying drug candidates exhibiting the potency block B cell activation via BTK inhibition, the pharmaceutical industry has relied on the use of covalent/irreversible inhibitors to address this unmet medical need. Herein, we describe a medicinal chemistry campaign to identify structurally diverse reversible BTK inhibitors originating from HITS identified using a fragment base screen. The leads were optimized to improve the potency and in vivo ADME properties resulting in a structurally distinct chemical series used to develop and validate a novel in vivo CD69 and CD86 PD assay in rodents.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Camundongos , Animais , Tirosina Quinase da Agamaglobulinemia , Inibidores de Proteínas Quinases/química , Modelos Animais de Doenças , Antígeno B7-2
2.
Nat Struct Mol Biol ; 26(7): 592-598, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31235909

RESUMO

Glucagon and insulin maintain blood glucose homeostasis and are used to treat hypoglycemia and hyperglycemia, respectively, in patients with diabetes. Whereas insulin is stable for weeks in its solution formulation, glucagon fibrillizes rapidly at the acidic pH required for solubility and is therefore formulated as a lyophilized powder that is reconstituted in an acidic solution immediately before use. Here we use solid-state NMR to determine the atomic-resolution structure of fibrils of synthetic human glucagon grown at pharmaceutically relevant low pH. Unexpectedly, two sets of chemical shifts are observed, indicating the coexistence of two ß-strand conformations. The two conformations have distinct water accessibilities and intermolecular contacts, indicating that they alternate and hydrogen bond in an antiparallel fashion along the fibril axis. Two antiparallel ß-sheets assemble with symmetric homodimer cross sections. This amyloid structure is stabilized by numerous aromatic, cation-π, polar and hydrophobic interactions, suggesting mutagenesis approaches to inhibit fibrillization could improve this important drug.


Assuntos
Amiloide/química , Glucagon/química , Sequência de Aminoácidos , Amiloide/ultraestrutura , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Conformação Proteica em Folha beta , Multimerização Proteica , Solubilidade
3.
Sci Rep ; 9(1): 3725, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842530

RESUMO

Influenza A and B viruses cause seasonal flu epidemics. The M2 protein of influenza B (BM2) is a membrane-embedded tetrameric proton channel that is essential for the viral lifecycle. BM2 is a functional analog of AM2 but shares only 24% sequence identity for the transmembrane (TM) domain. The structure and function of AM2, which is targeted by two antiviral drugs, have been well characterized. In comparison, much less is known about the structure of BM2 and no drug is so far available to inhibit this protein. Here we use solid-state NMR spectroscopy to investigate the conformation of BM2(1-51) in phospholipid bilayers at high pH, which corresponds to the closed state of the channel. Using 2D and 3D correlation NMR experiments, we resolved and assigned the 13C and 15N chemical shifts of 29 residues of the TM domain, which yielded backbone (φ, ψ) torsion angles. Residues 6-28 form a well-ordered α-helix, whereas residues 1-5 and 29-35 display chemical shifts that are indicative of random coil or ß-sheet conformations. The length of the BM2-TM helix resembles that of AM2-TM, despite their markedly different amino acid sequences. In comparison, large 15N chemical shift differences are observed between bilayer-bound BM2 and micelle-bound BM2, indicating that the TM helix conformation and the backbone hydrogen bonding in lipid bilayers differ from the micelle-bound conformation. Moreover, HN chemical shifts of micelle-bound BM2 lack the periodic trend expected for coiled coil helices, which disagree with the presence of a coiled coil structure in micelles. These results establish the basis for determining the full three-dimensional structure of the tetrameric BM2 to elucidate its proton-conduction mechanism.


Assuntos
Vírus da Influenza B/metabolismo , Proteínas Virais/química , Ligação de Hidrogênio , Vírus da Influenza B/química , Bicamadas Lipídicas/química , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas da Matriz Viral/química
4.
J Biomol NMR ; 68(4): 257-270, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28674916

RESUMO

Site-specific determination of molecular motion and water accessibility by indirect detection of 2H NMR spectra has advantages over dipolar-coupling based techniques due to the large quadrupolar couplings and the ensuing high angular resolution. Recently, a Rotor Echo Short Pulse IRrAdiaTION mediated cross polarization (RESPIRATIONCP) technique was developed, which allowed efficient transfer of 2H magnetization to 13C at moderate 2H radiofrequency field strengths available on most commercial MAS probes. In this work, we investigate the 2H-13C magnetization transfer characteristics of one-bond perdeuterated CD n spin systems and two-bond H/D exchanged C-(O)-D and C-(N)-D spin systems in carbohydrates and proteins. Our results show that multi-bond, broadband 2H-13C polarization transfer can be achieved using 2H radiofrequency fields of ~50 kHz, relatively short contact times of 1.3-1.7 ms, and with sufficiently high sensitivity to enable 2D 2H-13C correlation experiments with undistorted 2H spectra in the indirect dimension. To demonstrate the utility of this 2H-13C technique for studying molecular motion, we show 2H-13C correlation spectra of perdeuterated bacterial cellulose, whose surface glucan chains exhibit a motionally averaged C6 2H quadrupolar coupling that indicates fast trans-gauche isomerization about the C5-C6 bond. In comparison, the interior chains in the microfibril core are fully immobilized. Application of the 2H-13C correlation experiment to H/D exchanged Arabidopsis primary cell walls show that the O-D quadrupolar spectra of the highest polysaccharide peaks can be fit to a two-component model, in which 74% of the spectral intensity, assigned to cellulose, has a near-rigid-limit coupling, while 26% of the intensity, assigned to matrix polysaccharides, has a weakened coupling of 50 kHz. The latter O-D quadrupolar order parameter of 0.22 is significantly smaller than previously reported C-D dipolar order parameters of 0.46-0.55 for pectins, suggesting that additional motions exist at the C-O bonds in the wall polysaccharides. 2H-13C polarization transfer profiles are also compared between statistically deuterated and H/D exchanged GB1.


Assuntos
Celulose/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Arabidopsis , Isótopos de Carbono , Parede Celular/química , Celulose/análise , Deutério , Medição da Troca de Deutério , Proteínas/análise , Soluções
5.
J Mol Biol ; 429(14): 2192-2210, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-28535993

RESUMO

The influenza M2 protein forms an acid-activated proton channel that is essential for virus replication. The transmembrane H37 selects for protons under low external pH while W41 ensures proton conduction only from the N terminus to the C terminus and prevents reverse current under low internal pH. Here, we address the molecular basis for this asymmetric conduction by investigating the structure and dynamics of a mutant channel, W41F, which permits reverse current under low internal pH. Solid-state NMR experiments show that W41F M2 retains the pH-dependent α-helical conformations and tetrameric structure of the wild-type (WT) channel but has significantly altered protonation and tautomeric equilibria at H37. At high pH, the H37 structure is shifted toward the π tautomer and less cationic tetrads, consistent with faster forward deprotonation to the C terminus. At low pH, the mutant channel contains more cationic tetrads than the WT channel, consistent with faster reverse protonation from the C terminus. 15N NMR spectra allow the extraction of four H37 pKas and show that the pKas are more clustered in the mutant channel compared to WT M2. Moreover, binding of the antiviral drug, amantadine, at the N-terminal pore at low pH did not convert all histidines to the neutral state, as seen in WT M2, but left half of all histidines cationic, unambiguously demonstrating C-terminal protonation of H37 in the mutant. These results indicate that asymmetric conduction in WT M2 is due to W41 inhibition of C-terminal acid activation by H37. When Trp is replaced by Phe, protons can be transferred to H37 bidirectionally with distinct rate constants.


Assuntos
Histidina/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Triptofano/metabolismo , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/metabolismo , Substituição de Aminoácidos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Conformação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Triptofano/genética , Proteínas da Matriz Viral/genética
6.
Biochemistry ; 55(49): 6787-6800, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27766858

RESUMO

The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance. These studies provide structural information about the two domains when they are spatially well separated in the fusion process. To investigate how these two domains are structured relative to each other in the postfusion state, when the ectodomain forms a six-helix bundle that is thought to force the FP and TMD together in the membrane, we have now expressed and purified a chimera of the FP and TMD, connected by a Gly-Lys linker, and measured the chemical shifts and interdomain contacts of the protein in several lipid membranes. The FP-TMD chimera exhibits α-helical chemical shifts in all the membranes examined and does not cause strong curvature of lamellar membranes or membranes with negative spontaneous curvature. These properties differ qualitatively from those of the separate peptides, indicating that the FP and TMD interact with each other in the lipid membrane. However, no 13C-13C cross peaks are observed in two-dimensional correlation spectra, suggesting that the two helices are not tightly associated. These results suggest that the ectodomain six-helix bundle does not propagate into the membrane to the two hydrophobic termini. However, the loosely associated FP and TMD helices are found to generate significant negative Gaussian curvature to membranes that possess spontaneous positive curvature, consistent with the notion that the FP-TMD assembly may facilitate the transition of the membrane from hemifusion intermediates to the fusion pore.


Assuntos
Lipídeos/química , Proteínas de Membrana/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas Virais de Fusão/metabolismo , Proteínas de Membrana/química , Proteínas Virais de Fusão/química
7.
Protein Sci ; 22(11): 1623-38, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24023039

RESUMO

The influenza A M2 protein forms a proton channel for virus infection and mediates virus assembly and budding. While extensive structural information is known about the transmembrane helix and an adjacent amphipathic helix, the conformation of the N-terminal ectodomain and the C-terminal cytoplasmic tail remains largely unknown. Using two-dimensional (2D) magic-angle-spinning solid-state NMR, we have investigated the secondary structure and dynamics of full-length M2 (M2FL) and found them to depend on the membrane composition. In 2D (13)C DARR correlation spectra, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-bound M2FL exhibits several peaks at ß-sheet chemical shifts, which result from water-exposed extramembrane residues. In contrast, M2FL bound to cholesterol-containing membranes gives predominantly α-helical chemical shifts. Two-dimensional J-INADEQUATE spectra and variable-temperature (13)C spectra indicate that DMPC-bound M2FL is highly dynamic while the cholesterol-containing membranes significantly immobilize the protein at physiological temperature. Chemical-shift prediction for various secondary-structure models suggests that the ß-strand is located at the N-terminus of the DMPC-bound protein, while the cytoplasmic domain is unstructured. This prediction is confirmed by the 2D DARR spectrum of the ectodomain-truncated M2(21-97), which no longer exhibits ß-sheet chemical shifts in the DMPC-bound state. We propose that the M2 conformational change results from the influence of cholesterol, and the increased helicity of M2FL in cholesterol-rich membranes may be relevant for M2 interaction with the matrix protein M1 during virus assembly and budding. The successful determination of the ß-strand location suggests that chemical-shift prediction is a promising approach for obtaining structural information of disordered proteins before resonance assignment.


Assuntos
Vírus da Influenza A/química , Proteínas da Matriz Viral/química , Colesterol/metabolismo , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Modelos Químicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...