Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1264, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341446

RESUMO

Nitrate (NO3‒) pollution poses significant threats to water quality and global nitrogen cycles. Alkaline electrocatalytic NO3‒ reduction reaction (NO3RR) emerges as an attractive route for enabling NO3‒ removal and sustainable ammonia (NH3) synthesis. However, it suffers from insufficient proton (H+) supply in high pH conditions, restricting NO3‒-to-NH3 activity. Herein, we propose a halogen-mediated H+ feeding strategy to enhance the alkaline NO3RR performance. Our platform achieves near-100% NH3 Faradaic efficiency (pH = 14) with a current density of 2 A cm-2 and enables an over 99% NO3--to-NH3 conversion efficiency. We also convert NO3‒ to high-purity NH4Cl with near-unity efficiency, suggesting a practical approach to valorizing pollutants into valuable ammonia products. Theoretical simulations and in situ experiments reveal that Cl-coordination endows a shifted d-band center of Pd atoms to construct local H+-abundant environments, through arousing dangling O-H water dissociation and fast *H desorption, for *NO intermediate hydrogenation and finally effective NO3‒-to-NH3 conversion.

2.
J Am Chem Soc ; 146(1): 468-475, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150583

RESUMO

The in-tandem catalyst holds great promise for addressing the limitation of low *CO coverage on Cu-based materials for selective C2H4 generation during CO2 electroreduction. However, the potential mismatch between the CO-formation catalyst and the favorable C-C coupling Cu catalyst represents a bottleneck in these types of electrocatalysts, resulting in low tandem efficiencies. In this study, we propose a robust solution to this problem by introducing a wide-CO generation-potential window nickel single atom catalyst (Ni SAC) supported on a Cu catalyst. The selection of Ni SAC was based on theoretical calculations, and its excellent performance was further confirmed by using in situ IR spectroscopy. The facilitated carbon dimerization in our tandem catalyst led to a ∼370 mA/cm2 partial current density of C2H4, corresponding to a faradic efficiency of ∼62%. This performance remained stable and consistent for at least ∼14 h at a high current density of 500 mA/cm2 in a flow-cell reactor, outperforming most tandem catalysts reported so far.

3.
Adv Mater ; 35(21): e2300695, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929182

RESUMO

Main group single atom catalysts (SACs) are promising for CO2 electroreduction to CO by virtue of their ability in preventing the hydrogen evolution reaction and CO poisoning. Unfortunately, their delocalized orbitals reduce the CO2 activation to *COOH. Herein, an O doping strategy to localize electrons on p-orbitals through asymmetric coordination of Ca SAC sites (Ca-N3 O) is developed, thus enhancing the CO2 activation. Theoretical calculations indicate that asymmetric coordination of Ca-N3 O improves electron-localization around Ca sites and thus promotes *COOH formation. X-ray absorption fine spectroscopy shows the obtained Ca-N3 O features: one O and three N coordinated atoms with one Ca as a reactive site. In situ attenuated total reflection infrared spectroscopy proves that Ca-N3 O promotes *COOH formation. As a result, the Ca-N3 O catalyst exhibits a state-of-the-art turnover frequency of ≈15 000 per hour in an H-cell and a large current density of -400 mA cm-2 with a CO Faradaic efficiency (FE) ≥ 90% in a flow cell. Moreover, Ca-N3 O sites retain a FE above 90% even with a 30% diluted CO2 concentration.

4.
Angew Chem Int Ed Engl ; 62(9): e202217026, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36577697

RESUMO

Photoelectrochemical (PEC) water splitting is a promising approach for renewable solar light conversion. However, surface Fermi level pinning (FLP), caused by surface trap states, severely restricts the PEC activities. Theoretical calculations indicate subsurface oxygen vacancy (sub-Ov ) could release the FLP and retain the active structure. A series of metal oxide semiconductors with sub-Ov were prepared through precisely regulated spin-coating and calcination. Etching X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and electron energy loss spectra (EELS) demonstrated Ov located at sub ∼2-5 nm region. Mott-Schottky and open circuit photovoltage results confirmed the surface trap states elimination and Fermi level de-pinning. Thus, superior PEC performances of 5.1, 3.4, and 2.1 mA cm-2 at 1.23 V vs. RHE were achieved on BiVO4 , Bi2 O3 , TiO2 with outstanding stability for 72 h, outperforming most reported works under the identical conditions.

5.
ACS Nano ; 17(1): 411-420, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36524975

RESUMO

Electrocatalytic N2 reduction reaction (eNRR) provides a promising carbon-neutral and sustainable ammonia-synthesizing alternative to the Haber-Bosch process. However, the nonpolar N2 has significant thermodynamic stability and requires ultrahigh energy to break down the N≡N bond. Here, we report the construction of local enhanced electric fields (LEEFs) by Ag nanoneedle arrays to promote N≡N fracture thus assisting the eNRR. The LEEFs could induce charge polarization on nitrogen atoms and reduce the energy barrier in the N2 first-protonation step. The detected N─N and N─H intermediates prove the cleavage of the N≡N bond and the hydrogenation of N2 by LEEFs. The increased LEEFs lead to logarithmic growth rates for the targeted eNRR and exponential growth rates for the unavoidable competitive hydrogen evolution reaction. Thus, regulation and tuning of LEEFs to ∼4 × 104 kV m-1 endows the raise of eNRR to the summit, achieving high ammonia selectivity with a Faradaic efficiency of 72.3 ± 4.0%.

6.
ACS Appl Mater Interfaces ; 13(32): 38239-38247, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34342420

RESUMO

The difficulty of adsorption and activation of CO2 at the catalytic site and rapid recombination of photogenerated charge carriers severely restrict the CO2 conversion efficiency. Here, we fabricate a novel alkaline Co(OH)2-decorated ultrathin 2D titanic acid nanosheet (H2Ti6O13) catalyst, which rationally couples the structural and functional merits of ultrathin 2D supports with catalytically active Co species. Alkaline Co(OH)2 beneficially binds and activates CO2 molecules, while monolayer H2Ti6O13 acts as an electron relay that bridges a photosensitizer with Co(OH)2 catalytic sites. As such, photoexcited charges can be efficiently channeled from light absorbers to activated CO2 molecules through the ultrathin hybrid Co(OH)2/H2Ti6O13 composite, thereby producing syngas (CO/H2 mixture) from photoreduction of CO2. High evolution rates of 56.5 µmol h-1 for CO and 59.3 µmol h-1 for H2 are achieved over optimal Co(OH)2/H2Ti6O13 by visible light illumination. In addition, the CO/H2 ratio can be facilely tuned from 1:1 to 1:2.4 by changing the Co(OH)2 content, thus presenting a feasible approach to controllably synthesize different H2/CO mixtures for target applications.

7.
Environ Pollut ; 285: 117233, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940230

RESUMO

Zearalenone (ZEN), a mycotoxin with endocrine disruptive activity and oxidative stress generating ability, has been a worldwide environmental concern for its prevalence and persistency. However, the long-term effect of ZEN on aging process is not fully elucidated. Thus, the present study applied the Caenorhabditis elegans model to investigate the aging-related toxic effect and possible underlying mechanisms under prolonged and chronic ZEN exposure. Our results showed that locomotive behaviors significantly decreased in ZEN (0.3, 1.25, 5, 10, 50 µM) treated C. elegans. In addition, lifespan and aging markers including pharyngeal pumping and lipofuscin were also adversely affected by ZEN (50 µM). Furthermore, ZEN (50 µM) increased ROS level and downregulated antioxidant genes resulted from inhibition of nuclear DAF-16 translocation in aged C. elegans, which was further confirmed by more significant aging-related defects observed in ZEN treated daf-16 mutant. In conclusion, our findings suggest that the aging process and aging-related decline were induced by long-term exposure of ZEN in C. elegans, which is associated with oxidative stress, inhibition of antioxidant defense, and transcription factor DAF-16/FOXO.


Assuntos
Proteínas de Caenorhabditis elegans , Zearalenona , Envelhecimento , Animais , Antioxidantes , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Estresse Oxidativo
8.
Carcinogenesis ; 28(9): 1867-76, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17434929

RESUMO

Transcription factor Ying Yang 1 (YY1) indirectly regulates the C promoter-binding factor 1 (CBF1)-dependent Notch1 signaling via direct interaction with the Notch1 receptor intracellular domain (N1IC) on CBF1-response elements. To evaluate the possibility that the N1IC might modulate the gene expression of YY1 target genes through associating with YY1 on the YY1-response elements, we herein investigated the effect of Notch1 signaling on the expression of YY1 target genes. We found that the N1IC bound to the double-stranded oligonucleotides of YY1-response element to activate luciferase activity of the reporter gene with YY1-response elements through a CBF1-independent manner. Furthermore, the N1IC also bound to the promoter of human c-myc oncogene, a YY1 target gene, to elevate c-myc expression via a CBF1-independent pathway. The activation of reporter genes with YY1-response elements or human c-myc promoter by N1IC depended on the formation of N1IC-YY1-associated complex. To delineate the role of the Notch signal pathway in tumorigenesis, K562 cell lines expressing the N1IC were established. Compared with control cells, the proliferation and the tumor growth of N1IC-expressing K562 cells were suppressed. Taken together, these results suggest that the N1IC enhances the human c-myc promoter activity that is partially modulated by YY1 through a CBF1-independent pathway. However, the enhancement of c-myc expression by N1IC is insufficient to promote the tumor growth of K562 cells.


Assuntos
Regulação da Expressão Gênica , Genes myc , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Receptor Notch1/fisiologia , Fator de Transcrição YY1/metabolismo , Animais , Sequência de Bases , Células COS , Proteínas de Ligação ao Cálcio/genética , Chlorocebus aethiops , Cromatina/genética , Cromatina/fisiologia , Primers do DNA , Haplorrinos , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Células K562 , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , Plasmídeos , Reação em Cadeia da Polimerase , Proteínas Serrate-Jagged , Transdução de Sinais , Transfecção
9.
J Gastroenterol Hepatol ; 21(3): 556-62, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16638098

RESUMO

OBJECTIVE: Gastroesophageal flap valve (GEFV) grade predicts severe gastroesophageal reflux disease in Caucasians, but its role in other populations is unclear. This study evaluated the significance of endoscopic grading of the GEFV in Taiwanese subjects. METHODS: Five hundred and six consecutive patients undergoing routine check-ups at the National Taiwan University Hospital were enrolled. Symptoms of upper gastrointestinal disease and endoscopic severity of esophageal mucosal injury were correlated to GEFV grades according to the Hill classification. RESULTS: The frequency of abnormal valves (Hill grades III or IV) was 27.3%. Of these, 42.7% had erosive esophagitis (EE). The majority of patients with EE were classified as Los Angeles grades A and B (79.7 and 16.9%, respectively). The prevalence of EE, hiatal hernia and, to a lesser degree, non-erosive reflux disease, increased with altered GEFV. Patients with abnormal valves were younger and more likely to be male, overweight, and to have atypical and extraesophageal symptoms. CONCLUSIONS: Taiwanese patients with abnormal GEFVs share similar characteristics and risk factors with the patients who have EE. Endoscopic grading of the GEFV is highly associated with GERD, and in particular EE, in subjects undergoing routine endoscopy.


Assuntos
Junção Esofagogástrica/fisiopatologia , Esofagoscopia , Refluxo Gastroesofágico/fisiopatologia , Esofagite/epidemiologia , Esofagite/fisiopatologia , Feminino , Refluxo Gastroesofágico/classificação , Refluxo Gastroesofágico/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prevalência , Fatores de Risco , Inquéritos e Questionários , Taiwan/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...