Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Chemosphere ; 358: 142148, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679170

RESUMO

Although oilseed rape is frequently used as an alternative planting crop in the phytoremediation of cadmium (Cd)-contaminated agricultural land, methods for screening excellent oilseed rape varieties in this regard are inadequate. Herein, we developed a screening method that incorporates Cd accumulation, distribution, and removal, economic output, adaptability to Cd-contaminated agricultural land, and trace element variation. A Cd-adaptability index (Cd-AI) based on 10 agronomic traits was used to measure the adaptability of varieties to Cd-contaminated agricultural land. Moreover, to simplify the evaluation of adaptability, yield, biomass, and pod number with high weightings were selected to construct a discriminant function for Cd-contaminated agricultural land adaptability (correctly classified 94.20%). In a 2 year field trial, we evaluated 225 oilseed rape varieties, among which we identified two promising low-Cd-accumulating and two Cd-remediating varieties. For the low-Cd-accumulating varieties (HuYou17 and DeXingYou558), we obtained grain bioaccumulation factor (BAF) values of 0.07 and 0.08, BAFsoil-stalk values of <1, and economic outputs of RMB 25,054 and 32,292 yuan hm-2, respectively. Similarly, the Cd-remediating varieties (ZaoZa8 and YuYou61) were characterized by BAFsoil-stalk values of 4.65 and 3.61, BAFsoil-grain values of 0.16 and 0.16, Cd removals of 69.02 and 58.25 g hm-2, and economic outputs of RMB 31,189 and 24,962 yuan hm-2, respectively. Compared with the control variety, we detected lower uptakes of multiple trace elements (3-43%) in the low-Cd-accumulating varieties, whereas the Cd-remediating varieties were characterized by 15.40% and 8.30% increases in the accumulation of magnesium and zinc, respectively. Our findings augment the evaluation indices used for evaluating oilseed rape varieties and provide valuable insights from the perspectives of varietal screening and promotional application. The effective varieties identified have application potential for safe production and the remediation of agricultural land without interrupting annual agricultural production, and provide an economically sustainable approach for the utilization of Cd-contaminated agricultural land.


Assuntos
Agricultura , Biodegradação Ambiental , Cádmio , Poluentes do Solo , Cádmio/metabolismo , Cádmio/análise , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Agricultura/métodos , Brassica napus/metabolismo , Biomassa , Solo/química
4.
Sci Total Environ ; 916: 170260, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253105

RESUMO

Mercury (Hg) contamination in aquatic environments presents a significant ecological and human health concern. This study explored the relationship between catchment land use and Hg concentrations within Qinghai Lake sediment, the largest lake in China, situated on the Qinghai-Tibet plateau. The study entailed detailed mapping of Hg sediment concentrations and a subsequent environmental risk assessment. Considering the complex nature of the plateau landform and surface vegetation, the study area was delineated at a 100 km radius centered on Qinghai Lake, which was divided into 30 sectors to quantify relationships between land use and the sediment Hg concentration. The results revealed a mean sediment Hg concentration of 29.91 µg/kg, which was elevated above the background level. Kendall's correlation analysis revealed significant but weak associations between sediment Hg concentrations and three land use types: grassland (rangeland and trees) (rs = 0.27, p < 0.05), crops (rs = -0.37, p < 0.05), and bare ground (rs = -0.25, p < 0.1), suggesting that growing areas of grassland correlated with higher Hg levels in the lake sediment, in contrast to bare ground or crops area, which correlated with lower Hg concentrations. Multiple linear regression models also observed weak negative relationships between bare ground and crops with sediment Hg concentration. This research methodology enhances our understanding of the impact of land use on Hg accumulation in lake sediments and underscores the need for integrated watershed management strategies to mitigate Hg pollution in Qinghai Lake.

5.
J Hazard Mater ; 465: 133212, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38101012

RESUMO

Cultivated soil quality is crucial because it directly affects food safety and human health, and rice is of primary concern because of its centrality to global food networks. However, a detailed understanding of cadmium (Cd) geochemical cycling in paddy soils is complicated by the multiple influencing factors present in many rice-growing areas that overlap with industrial centers. This study analyzed the pollution characteristics and health risks of Cd in paddy soils across Hainan Island and identified key influencing factors based on multi-source environmental data and prediction models. Approximately 27.07% of the soil samples exceeded the risk control standard screening value for Cd in China, posing an uncontaminated to moderate contamination risk. Cd concentration and exposure duration contributed the most to non-carcinogenic and carcinogenic risks to children, teens, and adults through ingestion. Among the nine prediction models tested, Extreme Gradient Boosting (XGBoost) exhibited the best performance for Cd prediction with soil properties having the highest importance, followed by climatic variables and topographic attributes. In summary, XGBoost reliably predicted the soil Cd concentrations on tropical islands. Further research should incorporate additional soil properties and environmental variables for more accurate predictions and to comprehensively identify their driving factors and corresponding contribution rates.


Assuntos
Oryza , Poluentes do Solo , Adulto , Criança , Humanos , Adolescente , Solo/química , Cádmio/análise , Poluentes do Solo/análise , Inocuidade dos Alimentos , Oryza/química , China , Medição de Risco
6.
Chemosphere ; 350: 140936, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159737

RESUMO

Identifying driving factors is of great significance for understanding the mechanisms of soil pollution. In this study, a data processing method for driving factors was analyzed to explore the genesis of Arsenic (As) pollution in mining areas. The wind field that affects the atmospheric diffusion of pollutants was simulated using the standard k-ε model. Machine learning and GeoDetector methods were used to identify the primary driving factors. The results showed that the prediction performances of the three machine learning models were improved after data processing. The R2 values of random forest (RF), support vector machine, and artificial neural network increased from 0.45, 0.69, and 0.24 to 0.55, 0.76, and 0.52, respectively. The importance of wind increased from 20.85% to 26.22%. The importance of distance to the smelter plant decreased from 43.26% to 33.19% in the RF model. The wind's driving force (q value) increased from 0.057 to 0.235 in GeoDetector. The average value of historical atmospheric dust reached 534.98 mg/kg, indicating that atmospheric deposition was an important pathway for As pollution. The outcome of this study can provide a direction to clarify the mechanisms responsible for soil pollution at the mining area scale.


Assuntos
Arsênio , Metais Pesados , Poluentes do Solo , Solo , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Mineração , Arsênio/análise , China , Medição de Risco
7.
Ecotoxicol Environ Saf ; 265: 115530, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37774543

RESUMO

Toxic elements, such as Cd and Pb are of primary concern for soil quality and food security owing to their high toxicity and potential for bioaccumulation. Knowledge of the spatial variability of Cd and Pb in soil-rice systems across the landscape and identification of their driving factors are prerequisites for developing appropriate management strategies to remediate or regulate these hazardous contaminants. Considering the role of rice (Oryza sativa) as a dietary staple in China, this study aimed to examine the distribution patterns and drivers of Cd and Pb in tropical soil-rice systems across Hainan Island. To achieve this goal, 229 pairs of representative paddy soil and rice samples combined with a set of environmental covariates at the island scale were systematically analyzed. Arithmetic mean values (AMs) of Cd and Pb in rice were 0.080 and 0.199 mg kg-1, and exceeded the standard limits by 27.1% and 22.7%, respectively. We found that the AMs of Cd and Pb concentrations in paddy soil were 0.294 and 43.0 mg kg-1. Additionally, Cd in 29.26% of soil samples and Pb in 11.35% of soil samples exceeded the risk screening value for toxic elements. The enrichment factor generally showed that soil Cd and Pb on Hainan Island were both moderately enriched. Results obtained from both Spearman's correlation and stepwise regression analyses suggest that the concentrations of soil Cd and Pb are significantly influenced by the soil Na and Fe concentrations. Specifically, an increment of 1 g kg-1 in soil Na caused a rise of soil Cd and Pb by 57.1 mg kg-1 and 34.4 mg kg-1, respectively, while an increase of 1 g kg-1 in soil Fe resulted in a rise by 25.0 mg kg-1 and 14.5 mg kg-1. Similarly for rice grains, an increment of 1 g kg-1 in soil Ca resulted in a rise of rice Pb by 30.8 mg kg-1, whereas an increase of 1 g kg-1 in soil Mg led to a decrease in rice Pb by 14.8 mg kg-1. However, no significant correlation between soil Se and rice Cd concentrations was found. Furthermore, the result of geographically weighted regression revealed that the impacts of soil Na, Ca, Fe, and Mg on rice Cd were more significant in the western region, whereas the effects of soil Na and Fe on rice Pb were stronger in the northeastern region. This study provides new insights for the identification of factors influencing the distribution and accumulation of Cd and Pb in tropical island agroecosystems.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Solo , Chumbo/análise , Poluentes do Solo/análise
8.
Sci Total Environ ; 885: 163893, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37146815

RESUMO

A crop rotation system combining agricultural production with phytoremediation is an economical and sustainable method of remediation of cadmium (Cd)-contaminated farmland. This study focuses on migration and transformation of Cd in rotation systems and the influencing factors. In a two-year field experiment, four rotation systems were evaluated: traditional rice and oilseed rape (TRO), low-Cd rice and oilseed rape (LRO), maize and oilseed rape (MO), and soybean and oilseed rape (SO). Oilseed rape is a remediation plant in rotation systems. Compared to 2020, the grain Cd concentrations of traditional rice, low-Cd rice, and maize in 2021 decreased by 73.8%, 65.7%, and 24.0% (below the safety limits), respectively. However, soybean increased by 71.4%. The LRO system featured the highest oil content of rapeseed (about 50%) and economic output/input ratio (1.34). Removal efficiency of total Cd in soil was 10.03% (TRO) > 8.3% (LRO) > 5.32% (SO) > 3.21% (MO). Crop uptake of Cd was influenced by bioavailability of soil Cd, and soil environmental factors regulated the bioavailable Cd. Redundancy analysis (RDA) indicated that soil nitrate­nitrogen (NO3--N) had a dominant impact on bioavailable Cd in soil, with variance contributions of 56.7% for paddy-upland (TRO and LRO) and 53.5% for dryland (MO and SO) rotation systems. The difference reflected that ammonium N (NH4+-N) was a secondary factor in paddy-upland rotations, while it was the available phosphorus (P) in dryland rotations, with variance contributions of 10.4% and 24.3%, respectively. The comprehensive evaluation of crop safety, production, economic benefits, and remediation efficiency revealed that the LRO system was efficient and more acceptable to local farmers, providing a new direction for the utilization and remediation of Cd-contaminated farmland.


Assuntos
Brassica napus , Oryza , Poluentes do Solo , Cádmio/análise , Fazendas , Poluentes do Solo/análise , Solo , China , Produção Agrícola
9.
J Hazard Mater ; 445: 130560, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055969

RESUMO

Considering the soil cadmium pollution problem, the Chinese government proposed to estimate the costs and practicality "to completely improve the soil quality by the middle of this century". This study analyzed the challenges in achieving this goal using biophysical data from 10 typical demonstration soil phytoextraction projects. The current annual phytoextraction efficiency was determined as 14.8-490 g ha-1 a-1 at 319 RMB g-1 cadmium. A total of 798 billion RMB and 5 years were required for remediation of cadmium contamination, which was 22 times the investment in soil remediation during 2016-2022. The break-even point of phytoextraction projects was 29 years. The heavy financial burden was considered the primary challenge in improving the environmental quality of such soil. The cost could be reduced by 5.5-35.3 % through optimization measures such as resourcefulness of hyperaccumulator harvests, large-scale breeding, and mechanized management. The break-even point could be shortened to 6-15 years by intercropping/rotating crops, contributing to the goal. Active exploration of phytoextraction efficiency-more efficient accumulators, optimized agronomic measures-is worth practicing.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Biodegradação Ambiental , Poluentes do Solo/análise , Solo , China
10.
J Hazard Mater ; 448: 130934, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36860071

RESUMO

Soil pollution at steelworks mega-sites has become a severe environmental issue worldwide. However, due to the complex production processes and hydrogeology, the soil pollution distribution at steelworks is still unclear. This study scientifically cognized the distribution characteristics of polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), and heavy metals (HMs) at a steelworks mega-site based on multi-source information. Specifically, firstly, 3D distribution and spatial autocorrelation of pollutants were obtained by interpolation model and local indicators of spatial associations (LISA), respectively. Secondly, the characteristics of horizontal distribution, vertical distribution, and spatial autocorrelations of pollutants were identified by combining multi-source information such as production processes, soil layers, and properties of pollutants. Horizontal distribution showed that soil pollution in steelworks mainly occurred in the front end of the steel process chain. Over 47% of PAHs and VOCs pollution area were distributed in coking plants and over 69% of HMs in stockyards. Vertical distribution indicated that HMs, PAHs, and VOCs were enriched in the fill, silt, and clay layers, respectively. Spatial autocorrelation of pollutants was positively correlated with their mobility. This study clarified the soil pollution characteristics at steelworks mega-sites, which can support the investigation and remediation of steelworks mega-sites.

11.
Sci Total Environ ; 878: 163133, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37001672

RESUMO

Intercropping cadmium (Cd) hyperaccumulators with crops have been widely applied in the remediation of contaminated farmland soils. However, most studies were done on drylands since the majority of the hyperaccumulators are susceptible to the aquatic environment, making the remediation of Cd-contaminated paddy fields particularly difficult. Our study attempts to address the issue by intercropping the high-Cd-accumulating (henceforth, "high-Cd") rice cultivars with the low-Cd-accumulating (henceforth, "low-Cd") ones, and to study the Cd removal, uptake and translocation during the remediation process. The results indicated that intercropping mode with 20-cm row spacing (intercropping-20 treatment) performed better than the that with 30-cm row spacing (intercropping-30 treatment), while intercropping had stronger impact on late rice compared to early rice. In general, the physiological condition of rice was stable under the intercropping-20 treatment, suggesting the growth of rice was not impeded. For late rice, as the intercropping-20 treatment can significantly reduce soil pH and increase the diethylenetriaminepentaacetic acid extracted Cd (DTPA-extracted Cd) from the rhizosphere soil, Cd accumulated more in the tissues of the high-Cd rice cultivars (H2), and its dry biomass increased. As a result, a drastic improvement in the total Cd removal rate by 38.55 % was noticed. Therefore, the reduction of total Cd concentration in 0-20 cm profile caused by removal, thus it could provide safer soil environment for the growth of low Cd-rice cultivars (L2), leading to a significant drop in the root Cd concentration and safer production of L2. Interestingly, intercropping had no effect on the yield per plant of low-Cd rice cultivars. For early rice, intercropping-20 treatment exerted trivial effects to all aspects. The intercropping-30 treatment has poor representativeness of all indicators because of the large intercropping distance. Our results demonstrate that intercropping of the high-Cd and the low-Cd rice cultivars is a potential mode for Cd remediation in paddy fields.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Poluentes do Solo/análise , Solo , Biodegradação Ambiental
12.
Sci Total Environ ; 875: 162553, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36898332

RESUMO

Ammunition-related activities have caused severe energetic compound (EC) contamination and pose serious risks to ecosystems. However, little is known regarding the spatial-vertical variations of ECs or their migration in soils at ammunition demolition sites. Although the toxic effect of some ECs to microorganisms have been reported through laboratory simulations, the responses of indigenous microbial communities to ammunition demolition activities are unclear. In this study, the spatial-vertical variations of ECs in 117 topsoil samples and three soil profiles from a typical ammunition demolition site in China were studied. Heavy contamination of ECs was concentrated in the top soils of the work platforms, and ECs were also detected in the surrounding area and nearby farmland. ECs showed different migration characteristics in the 0-100 cm soil layer of the different soil profiles. Demolition activities and surface runoff play critical roles in the spatial-vertical variations and migration of ECs. These findings suggest that ECs are able to migrate from the topsoil to the subsoil and from the core demolition area to further ecosystems. The work platforms exhibited lower microbial diversity and different microbiota compositions compared to the surrounding areas and farmlands. Using the random forest analysis, pH and 1,3,5-trinitrobenzene (TNB) were characterized as the most important factors affecting microbial diversity. Network analysis revealed that Desulfosporosinus was highly sensitive to ECs and may be a unique indicator of EC contamination. These findings provide key information in understanding EC migration characteristics in soils and the potential threats to indigenous soil microorganisms in ammunition demolition sites.


Assuntos
Microbiota , Poluentes do Solo , Solo/química , Poluentes do Solo/análise , China , Armas , Microbiologia do Solo
13.
Environ Int ; 172: 107775, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36739854

RESUMO

There is a growing concern about human health of residents living in areas where mining and smelting occur. In order to understand the exposure to the potentially toxic elements (PTEs), we here identify and examine the cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn) in scalp hair of residents living in the mining area (Bayan Obo, n = 76), smelting area (Baotou, n = 57) and a reference area (Hohhot, n = 61). In total, 194 hair samples were collected from the volunteers (men = 87, women = 107) aged 5-77 years old in the three areas. Comparing median PTEs levels between the young and adults, Ni levels were significantly higher in adults living in the smelting area while Cr was highest in adults from the mining area, no significant difference was found for any of the elements in the reference area. From the linear regression model, no significant relationship between PTEs concentration, log10(PTEs), and age was found. The concentrations of Ni, Cd, and Pb in hair were significantly lower in the reference area when compared to both mining and smelting areas. In addition, Cu was significantly higher in the mining area when compared to the smelting area. Factor analysis (FA) indicated that men and women from the smelting area (Baotou) and mining area (Bayan Obo), respectively, had different underlying communality of log10(PTEs), suggesting different sources of these PTEs. Multiple factor analysis quantilized the importance of gender and location when combined with PTEs levels in human hair. The results of this study indicate that people living in mining and/or smelting areas have significantly higher PTEs (Cu, Ni, Cd, and Pb) hair levels compared to reference areas, which may cause adverse health effects. Remediation should therefore be implemented to improve the health of local residents in the mining and smelting areas.


Assuntos
Metais Pesados , Metais Terras Raras , Poluentes do Solo , Masculino , Adulto , Humanos , Feminino , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Metais Pesados/análise , Cádmio/análise , Couro Cabeludo/química , Chumbo/análise , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Metais Terras Raras/análise , Níquel , Cabelo/química , Cromo/análise , Mineração , Medição de Risco , China
14.
J Environ Manage ; 335: 117547, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36841002

RESUMO

A low-cost practical technology is urgently needed to minimize cadmium (Cd) pollution in rice in many parts of the world. In the present study, we elucidated the effects and mechanisms of four alkaline compound materials via field experiments in southern China. The results indicated that these two alkaline Si-rich compound materials (AF-SC, alkaline fertilizer compounded with Si-Ca mineral powder; AF-SS, AF compounded with Si-Se mineral powder) could achieve multi-objective gains by simultaneously reducing grain Cd, increasing yield and improving soil quality at a lower cost. The grain Cd content was decreased by an average of about 75% in two field sites, which even ensured safe grain production in areas with medium Cd pollution. The rice yield was increased by a range of 6.7%-21.0% for different varieties and sites. Moreover, the materials abated soil acidification with the increase of 0.36-0.62 pH units, increased the contents of available P and available Si, subsequently reducing available Cd content in soils. Structural equation model and regression analysis showed that the alkaline environment provided by the alkaline components in compound materials effectively inhibited the formation of Fe/Mn plaques on the root surface, reducing the uptake of Cd from the environment. In addition, the decrease in grain Cd was also attributed to the inhibition of Cd translocation from root to stem, mainly caused by the increase of available Si. These findings reveal that the base application of such alkaline Si-rich compound materials is a viable solution for the remediation of Cd-polluted paddy fields in south China.


Assuntos
Oryza , Poluentes do Solo , Cádmio/química , Pós/análise , Poluentes do Solo/química , Solo/química , Minerais/análise , Grão Comestível/química , Oryza/química
15.
J Hazard Mater ; 443(Pt B): 130290, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36335906

RESUMO

Contamination with energetic compounds (ECs) is common in military sites and poses a great risk to the environment and human health. However, its effects on the soil bacterial communities remain unclear. This study assessed the variations of bacterial communities, co-occurrence patterns, and their influence factors in three types of typical military-contaminated sites (artillery range, military-industrial site, and ammunition destruction site). The results showed that the most polluted sites were ammunition destruction sites, followed by military-industrial sites, whereas pollution in the artillery ranges was minimal. The average concentrations of ECs including 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in the study sites ranged 120-1.67 × 105, 20-7.20 × 104, and 180-2.38 × 105 µg/kg, respectively. Bacterial diversity and community structure in military-industrial and ammunition destruction sites were significantly changed, but not in artillery ranges. TNT, pH, and soil moisture are the critical factors affecting bacterial communities in contaminated military sites. Co-occurrence network analysis indicated that the pressure of ECs affected bacterial interactions and microbiota function. Our findings provide new insights into the variations in bacterial communities in EC-contaminated military sites and references for the bioremediation of ECs.


Assuntos
Microbiota , Militares , Poluentes do Solo , Trinitrotolueno , Humanos , Azocinas/análise , Azocinas/química , Biodegradação Ambiental , Triazinas/química , Solo , Poluentes do Solo/análise
16.
J Hazard Mater ; 443(Pt B): 130388, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444073

RESUMO

Vanadium (V) contamination of soils poses potential risks to humans and ecosystems. This study was conducted to evaluate the effects of endophyte-assisted phytoremediation and to determine the mechanisms involved in V detoxification and plant growth promotion. Results showed that the endophytic bacterium Serratia marcescens PRE01 could successfully colonize the roots and increase the total V uptake of Pteris vittata by 25.4 %, with higher plant biomass and V accumulation in roots. Endophyte inoculation significantly improved the secretion of phytic, malic, and oxalic acids and accelerated FeVO4 dissolution and subsequent Fe and V uptake in the rhizosphere. Under V stress without inoculation, V removed by shoot uptake, root uptake, and root surface adsorption accounted for 21.76 %, 42.14 %, and 30.93 % of the total V removal efficiency, respectively. To detoxify excess V, PRE01 effectively strengthened the adsorption of V on the root surface, with an increase in its contribution to the total V removal efficiency from 30.93 % to 38.10 %. Furthermore, beneficial endophytes could alleviate oxidative damage caused by V stress by reinforcing the plant antioxidant system and promoting V(V) reduction in root tissues. These findings clearly reveal that inoculation with endophytes is a promising method for modulating multiple strategies to enhance the phytoremediation of V-contaminated soils.


Assuntos
Pteris , Humanos , Endófitos , Vanádio , Biodegradação Ambiental , Ecossistema , Solo
17.
J Hazard Mater ; 439: 129599, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35878496

RESUMO

Cadmium (Cd) contamination in rice grains has become a severe issue worldwide. This study aims to explore feasible technologies applicable to different risk lands and develop a practical solution for safe rice production at a regional scale. Despite inconsistent field conditions in the whole region, various foliar fertilizers could effectively decrease grain Cd content by 20.4-41.6 % and were capable of producing safe grains in low/medium-risk areas. At high-risk sites, foliage dressing coupled with alkaline fertilizers significantly reduced Cd accumulation and increased grain compliance rate to 95.0 %. The cost analysis and questionnaire survey showed the above technologies are low-cost, eco-friendly, and highly acceptable in real-world scenarios. The classification results by conditional inference tree (CIT) for CK and FS scenarios indicated grain Cd content is closely related to the interaction effects of soil Cd and pH. On these bases, the whole area was divided spatially into three different risk zones, and each zone matched a feasible method for safe production, subsequently developing a precise and differentiated solution. The estimation results demonstrate it can effectively improve the precision level of safe utilization of regional polluted lands and save more than half of the total cost, providing a new idea for regional Cd-polluted paddy fields management strategies.


Assuntos
Oryza , Poluentes do Solo , Cádmio/química , China , Fertilizantes/análise , Oryza/química , Solo/química , Poluentes do Solo/análise
18.
Environ Int ; 167: 107424, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35908392

RESUMO

This paper presents a novel chain model named soil-food-human (SFH) for clarifying the biogeochemical cascades among the triple challenges of cadmium contamination, food safety, and related public health effect. The model was developed based on the integration of spatial distribution pattern of soil environment and the biogeochemical process of cadmium in soil-rice-human health, and it was validated through a case study. In soil environment terms, SFH predicted the spatial distribution of soil properties with an average prediction accuracy of 82.28%. In food production terms, the SFH can identify the safe production zones for planting rice and unsafe area for adjusting croppingsystems with a relative error of 39.41%. In food consumption terms, SFH mapped the high-resolution map of cadmium exposure dose, which gives a new solution to assess the food safety risks for self-sufficient populations. For the health effect of rice cadmium exposure, SFH simulated the spatiotemporal pattern of urinary cadmium based on toxicokinetic which revealed the health effect of rice cadmium exposure. The chain model provides a new insight in understanding the biogeochemical cascades between food production, food safety, and public health, making it possible to develop a comprehensive strategy to tackle cadmium pollution in soil-rice-human health system.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , China , Poluição Ambiental , Humanos , Oryza/química , Solo/química , Poluentes do Solo/análise
19.
Sci Total Environ ; 839: 156287, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35636553

RESUMO

The spatial association of potentially toxic elements (PTEs) in soil-crop-groundwater systems is poorly recognised. In this study, the contents of arsenic (As), cadmium (Cd), copper (Cu) and lead (Pb) in paddy soils, rice and groundwater in the Xiancha River catchment were determined. The intrinsic effects of PTEs in soils on their spatial distribution in groundwater and rice were explored. Also, the potential sources and health risks of PTEs in multi-media were investigated. Results showed that the mean contents of As and Cd in soils were 23.86 and 0.26 mg kg-1, respectively. In groundwater, the maximum (average) content of As reached 6.55 (1.84) µg L-1. Moreover, As contents in soils and groundwater showed a sound spatial correlation (q = 0.81), and this is supported by the result of the soil column experiment, indicating homology and the strong vertical migration capacity of As. The non-homologous patterns of Pb, Cu and Cd contaminations in soil-groundwater system suggested that geogenic processes influenced the distribution of these PTEs. Cd presented a poor spatial correlation in soil-rice system, as multiple factors controlled its transfer process. Multivariate statistical analysis results demonstrated that As, Cu and Pb in soils mainly came from agricultural sources, whereas high Cd levels were from mining activities. Additionally, direct consumption of As-contaminated groundwater and Cd-contaminated rice posed significant health risks to local residents. This study, which proposes a risk recognition method used to investigate target PTEs in multi-media, may serve as a valuable reference for further research involving catchments.


Assuntos
Arsênio , Metais Pesados , Oryza , Poluentes do Solo , Arsênio/análise , Cádmio/análise , China , Monitoramento Ambiental , Chumbo/análise , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise
20.
Sci Total Environ ; 838(Pt 2): 156169, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35613641

RESUMO

Intense industrial activities and complex hydrogeological conditions at contaminated sites make accurate three-dimensional (3D) mapping challenging. The cause is the non-stationarity in the variance of soil pollutants in geographical space (G-space), making the stationary hypothesis required by the Kriging method unsatisfactory. To handle the variance non-stationarity, a Variance-Octree-Kriging (VOK) method was proposed. VOK is a spatial deformation method that constructs a stationary deformation space (D-space) by stretching and shrinking the G-spaces with low and high spatial correlation, respectively. VOK method consists of 3D stratification in G-space, space scaling and transformation, and ordinary Kriging (OK) in D-space. 3D stratification uses variance octree (VOT) to generate a set of anchor points in the G-space. The spatial scaling and transformation use the virtual force algorithm (VFA) and thin-plate spline to evenly distribute the anchor points and obtain the D-space, where the OK is implemented. The method was applied to predict the distribution of soil Benzo(a)pyrene (BaP) at a contaminated site in North China Plain. The results show that the interpolation accuracy of VOK was 9% higher than that of OK. The VOK method also changed the spatial structure from anisotropic to isotropic. The root mean squared error (RMSE) of fill, silt and clay layers decreased by 4.67%, 11.39%, and 20.46%, respectively. This method is applicable to the 3D interpolation of pollutants at contaminated sites, with the advantages of high interpolation accuracy and the ability to handle the non-stationarity in variance.


Assuntos
Benzo(a)pireno , Poluentes do Solo , Monitoramento Ambiental/métodos , Solo/química , Poluentes do Solo/análise , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...