Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(26): 44811-44822, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178540

RESUMO

With the development of camouflage technology, single camouflage technology can no longer adapt to existing environments, and multispectral camouflage has attracted much research focus. However, achieving camouflage compatibility across different bands remains challenging. This study proposes a multispectral camouflage metamaterial structure using a particle swarm optimization algorithm, which exhibits multifunctional compatibility in the visible and infrared bands. In the visible band, the light absorption rate of the metamaterial structure exceeds 90%. In addition, color camouflage can be achieved by modifying the top cylindrical nanostructure to display different colors. In the infrared band, the metamaterial structure can achieve three functions: dual-band infrared camouflage (3-5 µm and 8-14 µm), laser stealth (1.06, 1.55, and 10.6 µm), and heat dissipation (5-8 µm). This structure exhibits lower emissivity in both the 3-5-µm (ɛ=0.18) and 8-14-µm (ɛ=0.27) bands, effectively reducing the emissivity in the atmospheric window band. The structure has an absorption rate of 99.7%, 95.5%, and 95% for 1.06, 1.55, and 10.6 µm laser wavelengths, respectively. Owing to its high absorptivity, laser stealth is achieved. Simultaneously, considering the heat dissipation requirements of metamaterial structures, the structural emissivity is 0.7 in the non-atmospheric window (5-8 µm), and the heat can be dissipated through air convection. Therefore, the designed metamaterial structure can be used in military camouflage and industrial applications.

2.
Nanomaterials (Basel) ; 12(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36014618

RESUMO

We numerically investigated a dual-band metamaterial absorber based on the combination of plasmonic resonance and Fabry-Pérot (FP) resonance, which can achieve near-unity absorption for guided lasers. The absorber is constructed by a three-layer metal-insulator-metal (MIM) periodic configuration. In each unit cell, there is a gold-silicon cross on a thin silicon layer and a bottom nickel film. Numerical results show that, at normal incidence, the structure strongly absorbs light at wavelengths of 1.064 µm and 10.6 µm, with absorption rates higher than 94%. It is revealed that the two absorption peaks result from FP resonance in the thin silicon layer and plasmonic resonance in the cross, respectively. In addition, the absorber is polarization insensitive and is tolerant to the incident angle. The proposed combination of different resonances has the advantage of easily producing double absorption peaks with very large wavelength differences, and provides a new approach to the design of metamaterial absorbers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...