Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38949978

RESUMO

Objective: To investigate the association between ACTN4 gene mutation and primary nephrotic syndrome (PNS) in children in Guangxi Autonomous Region, China. Methods: The high-throughput sequencing technology was used to sequence ACTN4 gene in 155 children with PNS in Guangxi Autonomous Region in China, with 98 healthy children serving as controls. Twenty-three exon-specific capture probes targeting ACTN4 were designed and used to hybridize with the genomic DNA library. The targeted genomic region DNA fragments were enriched and sequenced. The protein levels of ACTN4 in both case and control groups were quantified using ELISA method. Results: Bioinformatics analysis revealed five unique ACTN4 mutations exclusively in patients with PNS, including c.1516G>A (p.G506S) on one exon in 2 patients, c.1442 + 10G>A at the splice site in 1 patient, c.1649A>G (p.D550G) on exon in 1 patient, c.2191-4G>A at the cleavage site in 2 patients, and c.2315C>T (p.A772V) on one exon in 1 patient. The c.1649A>G (p.D550G) and c.2315C>T (p.A772V) were identified from the same patient. Notably, c.1649A>G (p.D550G) represents a novel mutation in ACTN4. In addition, three other ACTN4 polymorphisms occurred in both case and control groups, including c.162 + 6C>T (1 patient in case group and 2 patients in control group), c.572 + 11G>A (1 patient in case group and 2 patients in control group), and c.2191-5C>T (4 patients in the case group and 3 patients in control group). The serum ACTN4 concentration in the case group was markedly higher, averaging 544.7 ng/mL (range: 264.6-952.6 ng/mL), compared with 241.20 ng/mL (range: 110.75-542.35 ng/mL) in the control group. Conclusion: Five ACTN4 polymorphisms were identified among children with PNS in Guangxi Autonomous Region, China, including the novel mutation c.1649A>G. The lower serum levels of α-actinin-4 in the case group suggest that this protein might play a protective role in PNS.

2.
Mol Cell Biochem ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985252

RESUMO

Cardiovascular disease (CVD) stands as a predominant global cause of morbidity and mortality, necessitating effective and cost-efficient therapies for cardiovascular risk reduction. Mitochondrial coupling factor 6 (CF6), identified as a novel proatherogenic peptide, emerges as a significant risk factor in endothelial dysfunction development, correlating with CVD severity. CF6 expression can be heightened by CVD risk factors like mechanical force, hypoxia, or high glucose stimuli through the NF-κB pathway. Many studies have explored the CF6-CVD relationship, revealing elevated plasma CF6 levels in essential hypertension, atherosclerotic cardiovascular disease (ASCVD), stroke, and preeclampsia patients. CF6 acts as a vasoactive and proatherogenic peptide in CVD, inducing intracellular acidosis in vascular endothelial cells, inhibiting nitric oxide (NO) and prostacyclin generation, increasing blood pressure, and producing proatherogenic molecules, significantly contributing to CVD development. CF6 induces an imbalance in endothelium-dependent factors, including NO, prostacyclin, and asymmetric dimethylarginine (ADMA), promoting vasoconstriction, vascular remodeling, thrombosis, and insulin resistance, possibly via C-src Ca2+ and PRMT-1/DDAH-2-ADMA-NO pathways. This review offers a comprehensive exploration of CF6 in the context of CVD, providing mechanistic insights into its role in processes impacting CVD, with a focus on CF6 functions, intracellular signaling, and regulatory mechanisms in vascular endothelial cells.

3.
Imeta ; 3(1): e162, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38868512

RESUMO

Regulation on denitrifying microbiomes is crucial for sustainable industrial biotechnology and ecological nitrogen cycling. The holistic genetic profiles of microbiomes can be provided by meta-omics. However, precise decryption and further applications of highly complex microbiomes and corresponding meta-omics data sets remain great challenges. Here, we combined optogenetics and geometric deep learning to form a discover-model-learn-advance (DMLA) cycle for denitrification microbiome encryption and regulation. Graph neural networks (GNNs) exhibited superior performance in integrating biological knowledge and identifying coexpression gene panels, which could be utilized to predict unknown phenotypes, elucidate molecular biology mechanisms, and advance biotechnologies. Through the DMLA cycle, we discovered the wavelength-divergent secretion system and nitrate-superoxide coregulation, realizing increasing extracellular protein production by 83.8% and facilitating nitrate removal with 99.9% enhancement. Our study showcased the potential of GNNs-empowered optogenetic approaches for regulating denitrification and accelerating the mechanistic discovery of microbiomes for in-depth research and versatile applications.

5.
Dev Cell ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38781975

RESUMO

The transcription factor EHF is highly expressed in the lactating mammary gland, but its role in mammary development and tumorigenesis is not fully understood. Utilizing a mouse model of Ehf deletion, herein, we demonstrate that loss of Ehf impairs mammary lobuloalveolar differentiation at late pregnancy, indicated by significantly reduced levels of milk genes and milk lipids, fewer differentiated alveolar cells, and an accumulation of alveolar progenitor cells. Further, deletion of Ehf increased proliferative capacity and attenuated prolactin-induced alveolar differentiation in mammary organoids. Ehf deletion also increased tumor incidence in the MMTV-PyMT mammary tumor model and increased the proliferative capacity of mammary tumor organoids, while low EHF expression was associated with higher tumor grade and poorer outcome in luminal A and basal human breast cancers. Collectively, these findings establish EHF as a non-redundant regulator of mammary alveolar differentiation and a putative suppressor of mammary tumorigenesis.

6.
Open Life Sci ; 19(1): 20220839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585629

RESUMO

Gastric mucosal samples were procured and underwent the sequencing of 16S ribosomal RNA (16S rRNA) via Illumina high-throughput sequencing technology to explore the impact of Helicobacter pylori (H. pylori) infection on the composition of gastric flora in chronic gastritis (CG) patients. In the results, the operational taxonomic unit (OTU) analysis revealed an overlap of 5706 OTUs shared between the two groups. The top 5 abundance ranking (TOP5) phyla comprised Bacteroidetes, Proteobacteria, Firmicutes, Actinobacteria, and Epsilonbacteraeota, while the TOP5 genus was Lachnospiraceae_NK4A136_group, Helicobacter, Bacteroides, Klebsiella, and Pseudomonas. In the metabolic pathways at the Kyoto Encyclopedia of Genes and Genomes (KEGG)_L3 level, conspicuous variations across seven functions were observed between the H. pylori-positive (HP_Pos) and H. pylori-negative (HP_Neg) groups. Subsequently, functional gene enrichment in KEGG pathways was further validated through animal experimentation. In contrast to the mice in the HP_Neg group, those infected with H. pylori manifested an infiltration of inflammatory cells, an augmentation in gastric acid secretion, and conspicuously elevated scores regarding gastric activity, along with heightened levels of malondialdehyde. In conclusion, CG patients infected with H. pylori displayed a disorder in gastric flora, furnishing a theoretical basis for the prophylaxis of H. pylori infection and its associated pathogenic ramifications.

7.
Environ Mol Mutagen ; 65(3-4): 116-120, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651401

RESUMO

The Ames test is required by regulatory agencies worldwide for assessing the mutagenic and carcinogenic potential of chemical compounds. This test uses several strains of bacteria to evaluate mutation induction: positive results in the assay are predictive of rodent carcinogenicity. As an initial step to understanding how well the assay may detect mutagens present as constituents of complex mixtures such as botanical extracts, a cross-sector working group examined the within-laboratory reproducibility of the Ames test using the extensive, publicly available National Toxicology Program (NTP) Ames test database comprising more than 3000 distinct test articles, most of which are individual chemicals. This study focused primarily on NTP tests conducted using the standard Organization for Economic Co-operation and Development Test Guideline 471 preincubation test protocol with 10% rat liver S9 for metabolic activation, although 30% rat S9 and 10 and 30% hamster liver S9 were also evaluated. The reproducibility of initial negative responses in all strains with and without 10% S9, was quite high, ranging from 95% to 99% with few exceptions. The within-laboratory reproducibility of initial positive responses for strains TA98 and TA100 with and without 10% rat liver S9 was ≥90%. Similar results were seen with hamster S9. As expected, the reproducibility of initial equivocal responses was lower, <50%. These results will provide context for determining the optimal design of recommended test protocols for use in screening both individual chemicals and complex mixtures, including botanicals.


Assuntos
Testes de Mutagenicidade , Animais , Testes de Mutagenicidade/métodos , Reprodutibilidade dos Testes , Ratos , Mutagênicos/toxicidade , Cricetinae , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Fígado/efeitos dos fármacos , Laboratórios/normas
8.
Microbiol Res ; 283: 127696, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518453

RESUMO

Boreal forests commonly suffer from nutrient deficiency due to restricted biological activity and decomposition. Biochar has been used as a promising strategy to improve soil quality, yet its impacts on forest soil microbes, particularly in cold environment, remains poorly understood. In this study, we investigated the effects of biochar, produced at different pyrolysis temperatures (500 °C and 650 °C) and applied at different amounts (0.5 kg·m-2 and 1.0 kg·m-2), on soil property, soil enzyme activity, and fungal community dynamics in a boreal forest over a span of two to four years. Our results showed that, four-year post-application of biochar produced at 650 °C and applied at 1.0 kg·m-2, significantly increased the relative abundance of Mortierellomycota and enhanced fungal species richness, α-diversity and evenness compared to the control (CK) (P < 0.05). Notably, the abundance of Phialocephala fortinii increased with the application of biochar produced at 500 °C and applied at 0.5 kg·m-2, exhibiting a positively correlation with the carbon cycling-related enzyme ß-cellobiosidase. Functionally, distinct fungal gene structures were formed between different biochar pyrolysis temperatures, and between application amounts in four-year post-biochar application (P < 0.05). Additionally, correlation analyses revealed the significance of the duration post-biochar application on the soil properties, soil extracellular enzymes, soil fungal dominant phyla, fungal community and gene structures (P < 0.01). The interaction between biochar pyrolysis temperature and application amount significantly influenced fungal α-diversity (P < 0.01). Overall, these findings provide theoretical insights and practical application for biochar as soil amendment in boreal forest ecosystems.


Assuntos
Carvão Vegetal , Micobioma , Resiliência Psicológica , Solo/química , Taiga , Ecossistema , Microbiologia do Solo
9.
Bioresour Technol ; 398: 130529, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437969

RESUMO

The process of biological fermentation is often accompanied by the release of CO2, resulting in low yield and environmental pollution. Refixing CO2 to the product synthesis pathway is an attractive approach to improve the product yield. Cadaverine is an important diamine used for the synthesis of bio-based polyurethane or polyamide. Here, aiming to increase its final production, a RuBisCO-based shunt consisting of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and phosphoribulate kinase (PRK) was expressed in cadaverine-producing E. coli. This shunt was calculated capable of increasing the maximum theoretical cadaverine yield based on flux model analysis. When a functional RuBisCO-based shunt was established and optimized in E. coli, the cadaverine production and yield of the final engineered strain reached the highest level, which were 84.1 g/L and 0.37 g/g Glucose, respectively. Thus, the design of in situ CO2 fixation provides a green and efficient industrial production process.


Assuntos
Escherichia coli , Ribulose-Bifosfato Carboxilase , Ribulose-Bifosfato Carboxilase/metabolismo , Cadaverina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Dióxido de Carbono/metabolismo , Fermentação
10.
Electromagn Biol Med ; 43(1-2): 61-70, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38347683

RESUMO

Osteoporotic osteoarthritis (OPOA) is a specific phenotype of OA with high incidence and severe cartilage damage. This study aimed to explore the protective efficacy of PEMF on the progression of OPOA and observed the effects of PEMF on PPARγ, autophagy- and apoptosis-related proteins in OPOA rats. Rats were randomly divided into three groups: control group, OPOA group, and PEMF group (n = 6). One week after surgery, the rats in PEMF group were subjected to PEMF (3.82 mT, 8 Hz, 40 min/day and 5 day/week) for 12 weeks. Results showed that PEMF retarded cartilage degeneration and bone loss, as evidenced by pathological staining image, decreased MMP-13 expression and increased bone mineral density. PEMF inhibited the serum levels of inflammatory cytokines, and the expressions of caspase-3 and caspase-8, while upregulated the expression of PPARγ. Moreover, PEMF significantly improved the autophagy disorders, represented by decrease expressions of Beclin-1, P62, and LC3B. The research demonstrates that PEMF can effectively prevent cartilage and subchondral bone destruction in OPOA rats. The potential mechanism may be related to upregulation of PPARγ, inhibition of chondrocyte apoptosis and inflammation, and improvement of autophagy disorder. PEMF therapy thus shows promising application prospects in the treatment of postmenopausal OA.


Osteoporotic osteoarthritis (OPOA) is a very common combination disease, that characterized by chronic pain, swollen joints and susceptibility to fractures. It is particularly common in postmenopausal women. At present, drug therapy is the main treatment method, but the adverse reactions are serious and can not stop the progression of the disease. PEMF is a safe physical therapy that has been shown to increase bone density, reduce pain, and improve joints mobility. In this study, we aimed to explore the protective effect and potential mechanism of PEMF on OPOA. We found that PEMF significantly inhibited the inflammatory response, ameliorated the damaged cartilage and subchondral bone in OPOA rats, that maybe related to the regulation of chondrocyte autophagy and apoptosis. This study provided a new vision for PEMF' treatment on OPOA and has positive significance for the clinical promotion of PEMF.


Assuntos
Apoptose , Autofagia , Modelos Animais de Doenças , Osteoartrite , PPAR gama , Ratos Sprague-Dawley , Animais , Autofagia/efeitos da radiação , PPAR gama/metabolismo , Apoptose/efeitos da radiação , Ratos , Osteoartrite/terapia , Osteoartrite/patologia , Osteoartrite/metabolismo , Feminino , Magnetoterapia , Osteoporose/terapia , Osteoporose/metabolismo , Osteoporose/patologia
11.
Nat Immunol ; 25(3): 496-511, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38356058

RESUMO

Visceral adipose tissue (VAT) is an energy store and endocrine organ critical for metabolic homeostasis. Regulatory T (Treg) cells restrain inflammation to preserve VAT homeostasis and glucose tolerance. Here, we show that the VAT harbors two distinct Treg cell populations: prototypical serum stimulation 2-positive (ST2+) Treg cells that are enriched in males and a previously uncharacterized population of C-X-C motif chemokine receptor 3-positive (CXCR3+) Treg cells that are enriched in females. We show that the transcription factors GATA-binding protein 3 and peroxisome proliferator-activated receptor-γ, together with the cytokine interleukin-33, promote the differentiation of ST2+ VAT Treg cells but repress CXCR3+ Treg cells. Conversely, the differentiation of CXCR3+ Treg cells is mediated by the cytokine interferon-γ and the transcription factor T-bet, which also antagonize ST2+ Treg cells. Finally, we demonstrate that ST2+ Treg cells preserve glucose homeostasis, whereas CXCR3+ Treg cells restrain inflammation in lean VAT and prevent glucose intolerance under high-fat diet conditions. Overall, this study defines two molecularly and developmentally distinct VAT Treg cell types with unique context- and sex-specific functions.


Assuntos
Proteína 1 Semelhante a Receptor de Interleucina-1 , Linfócitos T Reguladores , Feminino , Masculino , Humanos , Gordura Intra-Abdominal , Citocinas , Inflamação , Glucose
12.
Cell Rep ; 43(3): 113831, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38401121

RESUMO

Cancer immunotherapies have demonstrated remarkable success; however, the majority of patients do not respond or develop resistance. Here, we conduct epigenetic gene-targeted CRISPR-Cas9 screens to identify epigenomic factors that limit CD8+ T cell-mediated anti-tumor immunity. We identify that PRMT1 suppresses interferon gamma (Ifnγ)-induced MHC-I expression, thus dampening CD8+ T cell-mediated killing. Indeed, PRMT1 knockout or pharmacological targeting of type I PRMT with the clinical inhibitor GSK3368715 enhances Ifnγ-induced MHC-I expression through elevated STAT1 expression and activation, while re-introduction of PRMT1 in PRMT1-deficient cells reverses this effect. Importantly, loss of PRMT1 enhances the efficacy of anti-PD-1 immunotherapy, and The Cancer Genome Atlas analysis reveals that PRMT1 expression in human melanoma is inversely correlated with expression of human leukocyte antigen molecules, infiltration of CD8+ T cells, and overall survival. Taken together, we identify PRMT1 as a negative regulator of anti-tumor immunity, unveiling clinical type I PRMT inhibitors as immunotherapeutic agents or as adjuncts to existing immunotherapies.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Humanos , Linfócitos T CD8-Positivos/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Imunidade Celular , Interferon gama/metabolismo , Melanoma/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
13.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305456

RESUMO

Protein structure prediction is a longstanding issue crucial for identifying new drug targets and providing a mechanistic understanding of protein functions. To enhance the progress in this field, a spectrum of computational methodologies has been cultivated. AlphaFold2 has exhibited exceptional precision in predicting wild-type protein structures, with performance exceeding that of other methods. However, predicting the structures of missense mutant proteins using AlphaFold2 remains challenging due to the intricate and substantial structural alterations caused by minor sequence variations in the mutant proteins. Molecular dynamics (MD) has been validated for precisely capturing changes in amino acid interactions attributed to protein mutations. Therefore, for the first time, a strategy entitled 'MoDAFold' was proposed to improve the accuracy and reliability of missense mutant protein structure prediction by combining AlphaFold2 with MD. Multiple case studies have confirmed the superior performance of MoDAFold compared to other methods, particularly AlphaFold2.


Assuntos
Aminoácidos , Simulação de Dinâmica Molecular , Proteínas Mutantes , Reprodutibilidade dos Testes , Mutação , Conformação Proteica
14.
PLoS One ; 19(2): e0298348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363740

RESUMO

With the continuous advancement of technology, automated vehicle technology is progressively maturing. It is crucial to comprehend the factors influencing individuals' intention to utilize automated vehicles. This study examined user willingness to adopt automated vehicles. By incorporating age and educational background as random parameters, an ordered Probit model with random parameters was constructed to analyze the influential factors affecting respondents' adoption of automated vehicles. We devised and conducted an online questionnaire survey, yielding 2105 valid questionnaires. The findings reveal significant positive correlations between positive social trust, perceived ease of use, perceived usefulness, low levels of perceived risk, and the acceptance of automated vehicles. Additionally, our study identifies extraversion and openness as strong mediators in shaping individuals' intentions to use automated vehicles. Furthermore, prior experience with assisted driving negatively impacts people's inclination toward embracing automated vehicles. Our research also provides insights for promoting the adoption of automated vehicles: favorable media coverage and a reasonable division of responsibilities can enhance individuals' intentions to adopt this technology.


Assuntos
Veículos Autônomos , Intenção , Humanos , Tecnologia , Viagem , China
15.
Nucleic Acids Res ; 52(3): e13, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38059347

RESUMO

Differential expression analysis of RNA-seq is one of the most commonly performed bioinformatics analyses. Transcript-level quantifications are inherently more uncertain than gene-level read counts because of ambiguous assignment of sequence reads to transcripts. While sequence reads can usually be assigned unambiguously to a gene, reads are very often compatible with multiple transcripts for that gene, particularly for genes with many isoforms. Software tools designed for gene-level differential expression do not perform optimally on transcript counts because the read-to-transcript ambiguity (RTA) disrupts the mean-variance relationship normally observed for gene level RNA-seq data and interferes with the efficiency of the empirical Bayes dispersion estimation procedures. The pseudoaligners kallisto and Salmon provide bootstrap samples from which quantification uncertainty can be assessed. We show that the overdispersion arising from RTA can be elegantly estimated by fitting a quasi-Poisson model to the bootstrap counts for each transcript. The technical overdispersion arising from RTA can then be divided out of the transcript counts, leading to scaled counts that can be input for analysis by established gene-level software tools with full statistical efficiency. Comprehensive simulations and test data show that an edgeR analysis of the scaled counts is more powerful and efficient than previous differential transcript expression pipelines while providing correct control of the false discovery rate. Simulations explore a wide range of scenarios including the effects of paired vs single-end reads, different read lengths and different numbers of replicates.


Assuntos
Perfilação da Expressão Gênica , Software , Perfilação da Expressão Gênica/métodos , Teorema de Bayes , Incerteza , Análise de Sequência de RNA/métodos
16.
Synth Syst Biotechnol ; 8(4): 697-707, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38025766

RESUMO

Industrial microbes have become the core of biological manufacturing, which utilized as the cell factory for production of plenty of chemicals, fuels and medicine. However, the challenge that the extreme stress conditions exist in production is unavoidable for cell factory. Consequently, to enhance robustness of the chassis cell lays the foundation for development of bio-manufacturing. Currently, the researches on cell tolerance covered various aspects, involving reshaping regulatory network, cell membrane modification and other stress response. In fact, the strategies employed to improve cell robustness could be summarized into two directions, irrational engineering and rational engineering. In this review, the metabolic engineering technologies on enhancement of microbe tolerance to industrial conditions are summarized. Meanwhile, the novel thoughts emerged with the development of biological instruments and synthetic biology are discussed.

17.
Sci Immunol ; 8(88): eadf2163, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37801516

RESUMO

Intraepithelial lymphocytes (IELs), including αß and γδ T cells (T-IELs), constantly survey and play a critical role in maintaining the gastrointestinal epithelium. We show that cytotoxic molecules important for defense against cancer were highly expressed by T-IELs in the small intestine. In contrast, abundance of colonic T-IELs was dependent on the microbiome and displayed higher expression of TCF-1/TCF7 and a reduced effector and cytotoxic profile, including low expression of granzymes. Targeted deletion of TCF-1 in γδ T-IELs induced a distinct effector profile and reduced colon tumor formation in mice. In addition, TCF-1 expression was significantly reduced in γδ T-IELs present in human colorectal cancers (CRCs) compared with normal healthy colon, which strongly correlated with an enhanced γδ T-IEL effector phenotype and improved patient survival. Our work identifies TCF-1 as a colon-specific T-IEL transcriptional regulator that could inform new immunotherapy strategies to treat CRC.


Assuntos
Neoplasias Colorretais , Linfócitos Intraepiteliais , Camundongos , Humanos , Animais , Linfócitos Intraepiteliais/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta , Intestino Delgado , Epitélio
18.
Sheng Wu Gong Cheng Xue Bao ; 39(9): 3899-3909, 2023 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-37805863

RESUMO

In order to improve the teaching quality of engineering courses, we introduced a multi-dimensional teaching method into the teaching reform of biology majors in colleges based on the portfolio assessment in the curriculum of Cell Engineering. We reformed the knowledge system, teaching form and implementation scheme of this course. By combining the reform of online teaching, interactive teaching, case teaching and other teaching modes, the students mastered the relevant professional knowledge and the scientific and technological frontier of Cell Engineering. Moreover, their learning interest and enthusiasm, ability of analyzing and solving professional problems related to Cell Engineering also improved. The implementation of teaching reform of this course provides a reference for other similar professional courses in colleges.


Assuntos
Currículo , Estudantes , Humanos , Aprendizagem , Engenharia Celular
19.
Free Radic Biol Med ; 209(Pt 1): 70-83, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37806597

RESUMO

The gut microbiota plays a crucial role in maintaining host nutrition, metabolism, and immune homeostasis, particularly in extreme environmental conditions. However, the regulatory mechanisms of the gut microbiota in animal organisms hypobaric hypoxia exposure require further study. We conducted a research by comparing SD rats treated with an antibiotic (ABX) cocktail and untreated SD rats that were housed in a low-pressure oxygen chamber (simulating low pressure and hypoxic environment at 6000 m altitude) for 30 days. After the experiment, blood, feces, and lung tissues from SD rats were collected for analysis of blood, 16S rRNA amplicon sequencing, and non-targeted metabolomics. The results demonstrated that the antibiotic cocktail-treated SD rats exhibited elevated counts of neutrophil (Neu) and monocyte (Mon) cells, an enrichment of sulfate-reducing bacteria (SBC), reduced levels of glutathione, and accumulated phospholipid compounds. Notably, the accumulation of phospholipid compounds, particularly lysophosphatidic acid (LPA), lipopolysaccharide (LPS), and lysophosphatidylcholine (LPC), along with the aforementioned changes, contributed to heightened oxidative stress and inflammation in the organism. In addition, we explored the resistance mechanisms of SD rats in low-oxygen and low-pressure environments and found that increasing the quantity of the Prevotellaceae and related beneficial bacteria (especially Lactobacillus) could reduce oxidative stress and inflammation. These findings offer valuable insights into enhancing the adaptability of low-altitude animals under hypobaric hypoxia exposure.


Assuntos
Hipóxia , Estresse Oxidativo , Ratos , Animais , RNA Ribossômico 16S/genética , Ratos Sprague-Dawley , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Oxigênio , Inflamação , Fosfolipídeos
20.
Adv Mater ; 35(52): e2306102, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37669761

RESUMO

Great research efforts are devoted to exploring the miniaturization of chip-scale coherent light sources possessing excellent lasing performance. Despite the indispensable role in Si photonics, SiO2 is generally considered not contributing to the starting up and operation of integrated lasers. Here, this work demonstrates an extraordinary-performance subwavelength-scale perovskite vertical cavity laser with all-transparent SiO2 cavity, whose cavity is ultra-simple and composed of only two parallel SiO2 plates. By introducing a ligand-assisted thermally co-evaporation strategy, highly luminescent perovskite film with high reproducibility and excellent optical gain is grown directly on SiO2 . Benefitting from their high-refractive-index contrast, low-threshold, high-quality factor, and single-mode lasing is achieved in subwavelength range of ≈120 nm, and verified by long-range coherence distance (115.6 µm) and high linear polarization degree (82%). More importantly, the subwavelength perovskite laser device could operate in water for 20 days without any observable degradation, exhibiting ultra-stable water-resistant performance. These findings would provide a simple but robust and reliable strategy for the miniaturized on-chip lasers compatible with Si photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...