Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(20): 5449-5459, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37822914

RESUMO

Sodium montmorillonite (Na-MMT) clay mineral is a common type of swelling clay that has potential applications for nuclear waste storage at high temperatures and pressures. However, there is a limited understanding of the mechanical properties, local molecular stiffness, and dynamic heterogeneity of this material at elevated temperatures and pressures. To address this, we employ all-atomistic (AA) molecular dynamics (MD) simulation to investigate the tensile behavior of Na-MMT clay over a wide temperature range (500 K to 1700 K) and pressures (200 atm to 100 000 atm). The results show that increasing the temperature significantly reduces the tensile modulus, strength, and failure strain, while pressure has a minor effect compared to temperature, as seen in the normalized pressure-temperature plot. Mean-square displacement (MSD) analysis reveals increased molecular stiffness with increasing pressure and decreasing temperature, indicating suppressed atomic mobility. Our simulations indicate temperature-dependent dynamical heterogeneity in the Na-MMT model, supported by experimental studies and quantified local molecular stiffness distribution. These findings enhance our understanding of the tensile response and dynamical heterogeneity of Na-MMT clay under extreme conditions, aiding the development of clay minerals for engineering applications such as nuclear waste storage and shale gas extraction.

2.
Nanoscale ; 15(29): 12235-12244, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37403828

RESUMO

This study employs all-atomistic (AA) molecular dynamics (MD) simulations to investigate the crystallization and melting behavior of polar and nonpolar polymer chains on monolayers of graphene and graphene oxide (GO). Polyvinyl alcohol (PVA) and polyethylene (PE) are used as representative polar and nonpolar polymers, respectively. A modified order parameter is introduced to quantify the degree of two-dimensional (2D) crystallization of polymer chains. Our results show that PVA and PE chains exhibit significantly different crystallization behavior. PVA chains tend to form a more rounded, denser, and folded-stemmed lamellar structure, while PE chains tend to form an elongated straight pattern. The presence of oxidation groups on the GO substrate reduces the crystallinity of both PVA and PE chains, which is derived from the analysis of modified order parameter. Meanwhile, the crystallization patterns of polymer chains are influenced by the percentage, chemical components, and distribution of the oxidation groups. In addition, our study reveals that 2D crystalized polymer chains exhibit different melting behavior depending on their polarity. PVA chains exhibit a more molecular weight-dependent melting temperature than PE chains, which have a lower melting temperature and are relatively insensitive to molecular weight. These findings highlight the critical role of substrate and chain polarity in the crystallization and melting of polymer chains. Overall, our study provides valuable insights into the design of graphene-based polymer heterostructures and composites with tailored properties.

3.
Nano Lett ; 23(8): 3637-3644, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36898061

RESUMO

Upon crumpling, graphene sheets yield intriguing hierarchical structures with high resistance to compression and aggregation, garnering a great deal of attention in recent years for their remarkable potential in a variety of applications. Here, we aim to understand the effect of Stone-Wales (SW) defects, i.e., a typical topological defect of graphene, on the crumpling behavior of graphene sheets at a fundamental level. By employing atomistically informed coarse-grained molecular dynamics (CG-MD) simulations, we find that SW defects strongly influence the sheet conformation as manifested by the change in size scaling laws and weaken the self-adhesion of the sheet during the crumpling process. Remarkably, the analyses of the internal structures (i.e., local curvatures, stresses, and cross-section patterns) of crumpled graphene emphasize the enhanced mechanical heterogeneity and "glass-like" amorphous state elicited by SW defects. Our findings pave the way for understanding and exploring the tailored design of crumpled structure via defect engineering.

4.
Soft Matter ; 19(6): 1081-1091, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36722907

RESUMO

When a thin sheet is confined to a volume much smaller than its length (or width), it forms a complex state of sharp bends, point-like developable cones (d-cones) and extended ridges known as crumpled matter. One interesting feature of this state, is its high resistance to compression given its light weight. While the origins of this strength still remain a matter of debate, much has been learned through simple experiments and models. Very little work has explored how crumpling is affected by the sheet's topology, which is curious given the close relation between geometry and mechanics. In this work, we couple confocal microscopy with simple force experiments and coarse-grained molecular dynamics (CG-MD) simulations to explore how adding cuts to a sheet alters its behavior in the crumpled state. We find that cutting does not significantly alter the overall compressive behaviour: force scales as a power law irrespective of cuts and magnitudes are only slightly reduced by cutting. Remarkably, when examining regions of high curvature in the crumpled sheets we see evidence of significant changes in the distribution of curvature in cut sheets.

5.
Langmuir ; 37(28): 8627-8637, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34227388

RESUMO

Understanding the crumpling behavior of two-dimensional (2D) macromolecular sheet materials is of fundamental importance in engineering and technological applications. Among the various properties of these sheets, interfacial adhesion critically contributes to the formation of crumpled structures. Here, we present a coarse-grained molecular dynamics (CG-MD) simulation study to explore the fundamental role of self-adhesion in the crumpling behaviors of macromolecular sheets having varying masses or sizes. By evaluating the potential energy evolution, our results show that the self-adhesion plays a dominant role in the crumpling behavior of the sheets compared to in-plane and out-of-plane stiffnesses. The macromolecular sheets with higher adhesion tend to form a self-folding planar structure at the quasi-equilibrium state of the crumpling and exhibit a lower packing efficiency as evaluated by the fractal dimension of the system. Notably, during the crumpling process, both the radius of gyration Rg and the hydrodynamic radius Rh of the macromolecular sheet can be quantitatively described by the power-law scaling relationships associated with adhesion. The evaluation of the shape descriptors indicates that the overall crumpling behavior of macromolecular sheets can be characterized by three regimes, i.e., the less bent, intermediate, and highly crumpled regimes, dominated by edge-bending, self-adhesion, and further compression, respectively. The internal structural analysis further reveals that the sheet transforms from the initially ordered state to the disordered glassy state upon crumpling, which can be facilitated by greater self-adhesion. Our study provides fundamental insights into the adhesion-dependent structural behavior of macromolecular sheets under crumpling, which is essential for establishing the structure-processing-property relationships for crumpled macromolecular sheets.

6.
Sensors (Basel) ; 17(5)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28471408

RESUMO

Cement-based piezoelectric materials are widely used due to the fact that compared with common smart materials, they overcome the defects of structure-incompatibility and frequency inconsistency with a concrete structure. However, the present understanding of the mechanical behavior of cement-based piezoelectric smart materials under impact load is still limited. The dynamic characteristics under impact load are of importance, for example, for studying the anti-collision properties of engineering structures and aircraft takeoff-landing safety. Therefore, in this paper, an analytical model was proposed to investigate the dynamic properties of a 2-2 cement-based piezoelectric dual-layer stacked sensor under impact load based on the piezoelectric effect. Theoretical solutions are obtained by utilizing the variable separation and Duhamel integral method. To simulate the impact load and verify the theory, three types of loads, including atransient step load, isosceles triangle load and haversine wave load, are considered and the comparisons between the theoretical results, Li's results and numerical results are presented by using the control variate method and good agreement is found. Furthermore, the influences of several parameters were discussed and other conclusions about this sensor are also given. This should prove very helpful for the design and optimization of the 2-2 cement-based piezoelectric dual-layer stacked sensor in engineering.

7.
Sensors (Basel) ; 17(9)2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-32962324

RESUMO

Cement-based piezoelectric composite, has been widely used as a kind of smart material in structural health monitoring and active vibration control. However, transient dynamic loads such as impact loads may cause serious damage to the composite. Considering the electrode layer effect, this paper aimed to investigate the theoretical response of a 2-2 cement-based piezoelectric composite sensor subjected to an impact load. The vibration behaviors are analyzed by using the mode summation method and the virtual work principle. To simulate the impact load, transient haversine wave loads are assumed in the numerical simulation. Close agreements between theoretical and numerical solutions are found for peak transient haversine wave loads larger than 500 kPa, therefore proving the validity of the theory. Moreover, the influence of the electrode material and geometrical parameters on the dynamic characteristics of this sensor are considered. The present work should be beneficial to the design of this kind of sensor by taking into account the electrode layer effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...