Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 10(2)2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28772457

RESUMO

Microwaves have been widely used in the treatment of materials, such as heating, drying, and sterilization. However, the heating in the commonly used microwave applicators is usually uneven. In this paper, a novel multi-material turntable structure is creatively proposed to improve the temperature uniformity in microwave ovens. Three customized turntables consisting of polyethylene (PE) and alumina, PE and aluminum, and alumina and aluminum are, respectively, utilized in a domestic microwave oven in simulation. During the heating process, the processed material is placed on a fixed Teflon bracket which covers the constantly rotating turntable. Experiments are conducted to measure the surface and point temperatures using an infrared thermal imaging camera and optical fibers. Simulated results are compared qualitatively with the measured ones, which verifies the simulated models. Compared with the turntables consisting of a single material, a 26%-47% increase in temperature uniformity from adapting the multi-material turntable can be observed for the microwave-processed materials.

2.
Materials (Basel) ; 9(5)2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28773433

RESUMO

Microwave processing of materials has been found to deliver enormous advantages over conventional processing methods in terms of mechanical and physical properties of the materials. However, the non-uniform temperature distribution is the key problem of microwave processing, which is related to the structure of the cavity, and the placement and physical parameters of the material. In this paper, a new microwave cavity structure with a sliding short based on phase-shifting heating is creatively proposed to improve the temperature uniformity. An electronic mathematical model based on the Finite Element Method (FEM) is built to predict the temperature distribution. Meanwhile, a new computational approach based on the theory of transformation optics is first provided to solve the problem of the moving boundary in the model simulation. At first, the experiment is carried out to validate the model, and heating results from the experiment show good agreement with the model's prediction. Based on the verified model, materials selected among a wide range of dielectric constants are treated by stationary heating and phase-shifting heating. The coefficient of variation (COV) of the temperature and temperature difference has been compared in detail between stationary heating and phase-shifting heating. A significant improvement in heating uniformity can be seen from the temperature distribution for most of the materials. Furthermore, three other materials are also treated at high temperature and the heating uniformity is also improved. Briefly, the strategy of phase-shifting heating plays a significant role in solve the problem of non-uniform heating in microwave-based material processing. A 25%-58% increase in uniformity from adapting the phase-shifting method can be observed for the microwave-processed materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...