Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 22(23): 28845-56, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25402124

RESUMO

Modeling the lifetime of a fused silica optic is described for a multiple beam, MJ-class laser system. This entails combining optic processing data along with laser shot data to account for complete history of optic processing and shot exposure. Integrating with online inspection data allows for the construction of a performance metric to describe how an optic performs with respect to the model. This methodology helps to validate the damage model as well as allows strategic planning and identifying potential hidden parameters that are affecting the optic's performance.


Assuntos
Lasers , Modelos Teóricos , Óptica e Fotônica , Estatística como Assunto , Estresse Mecânico , Cor , Lentes
2.
Opt Express ; 22(4): 3824-44, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663703

RESUMO

We present a comprehensive statistical model which includes both the probability of growth and growth rate to describe the evolution of exit surface damage sites on fused silica optics over multiple laser shots spanning a wide range of fluences. We focus primarily on the parameterization of growth rate distributions versus site size and laser fluence using Weibull statistics and show how this model is consistent with established fracture mechanics concepts describing brittle materials. Key growth behaviors and prediction errors associated with the present model are also discussed.

3.
Opt Express ; 20(14): 15569-79, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22772252

RESUMO

Empirical numerical descriptions of the growth of laser-induced damage have been previously developed. In this work, Monte-Carlo techniques use these descriptions to model the evolution of a population of damage sites. The accuracy of the model is compared against laser damage growth observations. In addition, a machine learning (classification) technique independently predicts site evolution from patterns extracted directly from the data. The results show that both the Monte-Carlo simulation and machine learning classification algorithm can accurately reproduce the growth of a population of damage sites for at least 10 shots, which is extremely valuable for modeling optics lifetime in operating high-energy laser systems. Furthermore, we have also found that machine learning can be used as an important tool to explore and increase our understanding of the growth process.

4.
Opt Express ; 20(12): 13030-9, 2012 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-22714330

RESUMO

Growth of laser damage on fused silica optical components depends on several key parameters including laser fluence, wavelength, pulse duration, and site size. Here we investigate the growth behavior of small damage sites on the exit surface of SiO2 optics under exposure to tightly controlled laser pulses. Results demonstrate that the onset of damage growth is not governed by a threshold, but is probabilistic in nature and depends both on the current size of a damage site and the laser fluence to which it is exposed. We also develop models for use in growth prediction. In addition, we show that laser exposure history also influences the behavior of individual sites.

5.
Appl Opt ; 50(22): D12-20, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21833091

RESUMO

Historically, the rate at which laser-induced damage sites grow on the exit surface of SiO2 optics under subsequent illumination with nanosecond-laser pulses of any wavelength was believed to depend solely on laser fluence. We demonstrate here that much of the scatter in previous growth observations was due to additional parameters that were not previously known to affect growth rate, namely the temporal pulse shape and the size of a site. Furthermore, the remaining variability observed in the rate at which sites grow is well described in terms of Weibull statistics. The effects of site size and laser fluence may both be expressed orthogonally in terms of Weibull coefficients. In addition, we employ a clustering algorithm to explore the multiparameter growth space and expose average growth trends. Conversely, this analysis approach also identifies sites likely to exhibit growth rates outside the norm. The ability to identify which sites are likely to grow abnormally fast in advance of the manifestation of such behavior will significantly enhance the accuracy of predictive models over those based on average growth behaviors.

6.
Appl Opt ; 50(20): 3547-52, 2011 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-21743565

RESUMO

We have found the local temporal shot-to-shot variation of the NIF high-energy laser system to be relatively constant (~3.4% to 4.2% of the mean fluence). We have developed a statistical model that predicts the maximum fluence distribution any particular location will be exposed to after N independent shots (the so-called max-of-N fluence distribution) using the measured shot-to-shot variance; this method allows for an estimate of maximum optics fluence exposure.

7.
Opt Lett ; 35(15): 2538-40, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20680050

RESUMO

We present an empirical model that describes the experimentally observed laser-induced bulk damage and conditioning behavior in deuterated potassium dihydrogen phosphate (DKDP) crystals. The model expands on an existing nanoabsorber precursor model and the multistep absorption mechanism to include two populations of absorbing defects, one with linear absorption and another with nonlinear absorption. We show that this model connects previously uncorrelated small-beam damage initiation probability data to large-beam damage density measurements over a range of nanosecond pulse widths. In addition, this work predicts the damage behavior of laser-conditioned DKDP.

8.
Opt Lett ; 31(9): 1277-9, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16642084

RESUMO

Optical parametric chirped-pulse amplification (OPCPA) in nonlinear crystals has the potential to produce extremes of peak and average power but is limited either in energy by crystal growth issues or in average power by crystal thermo-optic characteristics. Recently, large (7.5 cm diameter x 25 cm length) crystals of yttrium calcium oxyborate (YCOB) have been grown and utilized for high-average-power second-harmonic generation. Further, YCOB has the necessary thermo-optic properties required for scaling OPCPA systems to high peak and average power operation for wavelengths near 1 microm. We report what is believed to be the first use of YCOB for OPCPA. Scalability to higher peak and average power is addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...