Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol Rep ; 16(3): e13304, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38923306

RESUMO

The photosynthetic amoeba, Paulinella provides a recent (ca. 120 Mya) example of primary plastid endosymbiosis. Given the extensive data demonstrating host lineage-driven endosymbiont integration, we analysed nuclear genome and transcriptome data to investigate mechanisms that may have evolved in Paulinella micropora KR01 (hereinafter, KR01) to maintain photosynthetic function in the novel organelle, the chromatophore. The chromatophore is of α-cyanobacterial provenance and has undergone massive gene loss due to Muller's ratchet, but still retains genes that encode the ancestral α-carboxysome and the shell carbonic anhydrase, two critical components of the biophysical CO2 concentrating mechanism (CCM) in cyanobacteria. We identified KR01 nuclear genes potentially involved in the CCM that arose via duplication and divergence and are upregulated in response to high light and downregulated under elevated CO2. We speculate that these genes may comprise a novel CO2 delivery system (i.e., a biochemical CCM) to promote the turnover of the RuBisCO carboxylation reaction and counteract photorespiration. We posit that KR01 has an inefficient photorespiratory system that cannot fully recycle the C2 product of RuBisCO oxygenation back to the Calvin-Benson cycle. Nonetheless, both these systems appear to be sufficient to allow Paulinella to persist in environments dominated by faster-growing phototrophs.


Assuntos
Dióxido de Carbono , Cromatóforos , Fotossíntese , Simbiose , Dióxido de Carbono/metabolismo , Fotossíntese/genética , Cromatóforos/metabolismo , Amoeba/genética , Cianobactérias/genética , Cianobactérias/metabolismo , Filogenia
2.
Environ Microbiol ; 24(12): 6348-6364, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36178156

RESUMO

Cable bacteria are long, filamentous, multicellular bacteria that grow in marine sediments and couple sulfide oxidation to oxygen reduction over centimetre-scale distances via long-distance electron transport. Cable bacteria can strongly modify biogeochemical cycling and may affect microbial community networks. Here we examine interspecific interactions with marine cable bacteria (Ca. Electrothrix) by monitoring the succession of 16S rRNA amplicons (DNA and RNA) and cell abundance across depth and time, contrasting sediments with and without cable bacteria growth. In the oxic zone, cable bacteria activity was positively associated with abundant predatory bacteria (Bdellovibrionota, Myxococcota, Bradymonadales), indicating putative predation on cathodic cells. At suboxic depths, cable bacteria activity was positively associated with sulfate-reducing and magnetotactic bacteria, consistent with cable bacteria functioning as ecosystem engineers that modify their local biogeochemical environment, benefitting certain microbes. Cable bacteria activity was negatively associated with chemoautotrophic sulfur-oxidizing Gammaproteobacteria (Thiogranum, Sedimenticola) at oxic depths, suggesting competition, and positively correlated with these taxa at suboxic depths, suggesting syntrophy and/or facilitation. These observations are consistent with chemoautotrophic sulfur oxidizers benefitting from an oxidizing potential imparted by cable bacteria at suboxic depths, possibly by using cable bacteria as acceptors for electrons or electron equivalents, but by an as yet enigmatic mechanism.


Assuntos
Deltaproteobacteria , Gammaproteobacteria , Microbiota , RNA Ribossômico 16S/genética , Oxirredução , Sedimentos Geológicos/microbiologia , Deltaproteobacteria/genética , Bactérias/genética , Enxofre , Gammaproteobacteria/genética , Interações Microbianas , Filogenia
3.
Sci Rep ; 12(1): 14398, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002502

RESUMO

Coral bleaching, precipitated by the expulsion of the algal symbionts that provide colonies with fixed carbon is a global threat to reef survival. To protect corals from anthropogenic stress, portable tools are needed to detect and diagnose stress syndromes and assess population health prior to extensive bleaching. Here, medical grade Urinalysis strips, used to detect an array of disease markers in humans, were tested on the lab stressed Hawaiian coral species, Montipora capitata (stress resistant) and Pocillopora acuta (stress sensitive), as well as samples from nature that also included Porites compressa. Of the 10 diagnostic reagent tests on these strips, two appear most applicable to corals: ketone and leukocytes. The test strip results from M. capitata were explored using existing transcriptomic data from the same samples and provided evidence of the stress syndromes detected by the strips. We designed a 3D printed smartphone holder and image processing software for field analysis of test strips (TestStripDX) and devised a simple strategy to generate color scores for corals (reflecting extent of bleaching) using a smartphone camera (CoralDX). Our approaches provide field deployable methods, that can be improved in the future (e.g., coral-specific stress test strips) to assess reef health using inexpensive tools and freely available software.


Assuntos
Antozoários , Animais , Antozoários/genética , Recifes de Corais , Havaí , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...