Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(5): 2431-2442, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38258796

RESUMO

The coupled NO-vibrational peaks [IR νNO 1775 s, 1716 vs, 1668 vs cm-1 (THF)] between two adjacent [Fe(NO)2] groups implicate the electron delocalization nature of the singly O-phenoxide-bridged dinuclear dinitrosyliron complex (DNIC) [Fe(NO)2(µ-ON2Me)Fe(NO)2] (1). Electronic interplay between [Fe(NO)2] units and [ON2Me]- ligand in DNIC 1 rationalizes that "hard" O-phenoxide moiety polarizes iron center(s) of [Fe(NO)2] unit(s) to enforce a "constrained" π-conjugation system acting as an electron reservoir to bestow the spin-frustrated {Fe(NO)2}9-{Fe(NO)2}9-[·ON2Me]2- electron configuration (Stotal = 1/2). This system plays a crucial role in facilitating the ligand-based redox interconversion, working in harmony to control the storage and redox-triggered transport of the [Fe(NO)2]10 unit, while preserving the {Fe(NO)2}9 core in DNICs {Fe(NO)2}9-[·ON2Me]2- [K-18-crown-6-ether)][(ON2Me)Fe(NO)2] (2) and {Fe(NO)2}9-[·ON2Me] [(ON2Me)Fe(NO)2][PF6] (3). Electrochemical studies suggest that the redox interconversion among [{Fe(NO)2}9-[·ON2Me]2-] DNIC 3 ↔ [{Fe(NO)2}9-[ON2Me]-] ↔ [{Fe(NO)2}9-[·ON2Me]] DNIC 2 are kinetically feasible, corroborated by the redox shuttle between O-bridged dimerized [(µ-ONMe)2Fe2(NO)4] (4) and [K-18-crown-6-ether)][(ONMe)Fe(NO)2] (5). In parallel with this finding, the electronic structures of [{Fe(NO)2}9-{Fe(NO)2}9-[·ON2Me]2-] DNIC 1, [{Fe(NO)2}9-[·ON2Me]2-] DNIC 2, [{Fe(NO)2}9-[·ON2Me]] DNIC 3, [{Fe(NO)2}9-[ONMe]-]2 DNIC 4, and [{Fe(NO)2}9-[·ONMe]2-] DNIC 5 are evidenced by EPR, SQUID, and Fe K-edge pre-edge analyses, respectively.

2.
Inorg Chem ; 63(1): 784-794, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38153269

RESUMO

Nanosized zerovalent iron (NZVI) Fe@Fe3O4 with a core-shell structure derived from photocatalytic MeOH aqueous solution of dinitrosyl iron complex (DNIC) [(N3MDA)Fe(NO)2] (N3MDA = N,N-dimethyl-2-(((1-methyl-1H-imidazole-2-yl)methylene)amino)ethane-1-amine) (1-N3MDA), eosin Y, and triethylamine (TEA) is demonstrated. The NZVI Fe@Fe3O4 core shows a high percentage of zerovalent iron (Fe0 %) and is stabilized by a hydrophobic organic support formed through the photodegradation of eosin Y hybridized with the N3MDA ligand. In addition to its well-known reductive properties in wastewater treatment and groundwater remediation, NZVI demonstrates the ability to form heterostructures when it interacts with metal ions. In this research, Co2+ is employed as a model contaminant and reacted with NZVI Fe@Fe3O4 to result in the formation of a distinct Fe-Co heterostructure, cracked NZVI (CNZVI). The slight difference in the standard redox potentials between Fe2+ and Co2+, the magnetic properties of Co2+, and the absence of surface hydroxides of Fe@Fe3O4 enable NZVI to mildly reduce Co2+ and facilitate Co2+ penetration into the iron core. Taking advantage of the well-dispersed nature of CNZVI on an organic support, the reduction in particle size due to Co2+ penetration, and Fe-Co synergism, CNZVI is employed as a catalyst in the alkaline oxygen evolution reaction (OER). Remarkably, CNZVI exhibits a highly efficient OER performance, surpassing the benchmark IrO2 catalyst. These findings show the potential of using NZVI as a template for synthesizing highly efficient OER catalysts. Moreover, the study demonstrates the possibility of repurposing waste materials from water treatment as valuable resources for catalytic energy conversion, particularly in water oxidation processes.

3.
Small ; : e2307910, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072788

RESUMO

To investigate synergistic effect between geometric and electronic structures on directing CO2 RR selectivity, water phase synthetic protocol and surface architecture engineering strategy are developed to construct monodispersed Bi-doped Cu-based nanocatalysts. The strongly correlated catalytic directionality and Bi3+ dopant can be rationalized by the regulation of [*COOH]/[*CO] adsorption capacities through the appropriate doping of Bi3+ electronic modulator, resulting in volcano relationship between FECO /TOFCO and surface EVBM values. Spectroscopic study reveals that the dual-site binding mode ([Cu─µâ”€C(═O)O─Bi3+ ]) enabled by Cu1 Bi3+ 2 motif in single-phase Cu150 Bi1 nanocatalyst drives CO2-to-CO conversion. In contrast, the study of dynamic Bi speciation and phase transformation in dual-phase Cu50 Bi1 nanocatalyst unveils that the Bi0 -Bi0 contribution emerges at the expense of BOC phase, suggesting metallic Bi0 phase acting as [H]˙ formation center switches CO2 RR selectivity toward CO2-to-HCOO- conversion via [*OCHO] and [*OCHOK] intermediates. This work provides significant insight into how geometric architecture cooperates with electronic effect and catalytic motif/phase to guide the selectivity of electrocatalytic CO2 reduction through the distinct surface-bound intermediates and presents molecular-level understanding of catalytic mechanism for CO/HCOO- formation.

4.
ACS Chem Neurosci ; 14(16): 2922-2934, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37533298

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive impairment, memory loss, and behavioral deficits. ß-amyloid1-42 (Aß1-42) aggregation is a significant cause of the pathogenesis in AD. Despite the numerous types of research, the current treatment efficacy remains insufficient. Hence, a novel therapeutic strategy is required. Nitric oxide (NO) is a multifunctional gaseous molecule. NO displays a neuroprotective role in the central nervous system by inhibiting the Aß aggregation and rescuing memory and learning deficit through the NO signaling pathway. Targeting the NO pathway might be a therapeutic option; however, NO has a limited half-life under the biological system. To address this issue, a biomimetic dinitrosyl iron complex [(NO)2Fe(µ-SCH2CH2COOH)2Fe(NO)2] (DNIC-COOH) that could stably deliver NO was explored in the current study. To determine whether DNIC-COOH exerts anti-AD efficacy, DNIC-COOH was added to neuron-like cells and primary cortical neurons along with Aß1-42. This study found that DNIC-COOH protected neuronal cells from Aß-induced cytotoxicity, potentiated neuronal functions, and facilitated Aß1-42 degradation through the NO-sGC-cGMP-AKT-GSK3ß-CREB/MMP-9 pathway.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Humanos , Óxido Nítrico/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/tratamento farmacológico , Ferro/metabolismo , Peptídeos beta-Amiloides
5.
Inorg Chem ; 62(2): 769-781, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36580657

RESUMO

Continued efforts are made on the development of earth-abundant metal catalysts for dehydrogenation/hydrolysis of amine boranes. In this study, complex [K-18-crown-6-ether][(NO)2Fe(µ-MePyr)(µ-CO)Fe(NO)2] (3-K-crown, MePyr = 3-methylpyrazolate) was explored as a pre-catalyst for the dehydrogenation of dimethylamine borane (DMAB). Upon evolution of H2(g) from DMAB triggered by 3-K-crown, parallel conversion of 3-K-crown into [(NO)2Fe(N,N'-MePyrBH2NMe2)]- (5) and an iron-hydride intermediate [(NO)2(CO)Fe(µ-H)Fe(CO)(NO)2]- (A) was evidenced by X-ray diffraction/nuclear magnetic resonance/infrared/nuclear resonance vibrational spectroscopy experiments and supported by density functional theory calculations. Subsequent transformation of A into complex [(NO)2Fe(µ-CO)2Fe(NO)2]- (6) is synchronized with the deactivated generation of H2(g). Through reaction of complex [Na-18-crown-6-ether][(NO)2Fe(η2-BH4)] (4-Na-crown) with CO(g) as an alternative synthetic route, isolated intermediate [Na-18-crown-6-ether][(NO)2(CO)Fe(µ-H)Fe(CO)(NO)2] (A-Na-crown) featuring catalytic reactivity toward dehydrogenation of DMAB supports a substrate-gated transformation of a pre-catalyst [(NO)2Fe(µ-MePyr)(µ-CO)Fe(NO)2]- (3) into the iron-hydride species A as an intermediate during the generation of H2(g).

6.
Inorg Chem ; 61(51): 20719-20724, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36516228

RESUMO

Nanoscale zerovalent iron (NZVI) features potential application to biomedicine, (electro-/photo)catalysis, and environmental remediation. However, multiple-synthetic steps and limited ZVI content prompt the development of a novel strategy for efficient preparation of NZVI composites. Herein, a dinitrosyl iron complex [(N3MDA)Fe(NO)2] (1-N3MDA) was explored as a molecular precursor for one-pot photosynthesis of a cubic Fe@Fe3O4 core-shell nanoparticle (ZVI% = 60%) well-dispersed in an N-doping carbonaceous polymer (NZVI@NC). Upon photolysis of 1-N3MDA, photosensitizer Eosin Y, and sacrificial reductant TEA, the α-diimine N3MDA and noninnocent NO ligands (1) enable the slow reduction of 1-N3MDA into an unstable [(N3MDA)Fe(NO)2]- species, (2) serve as a capping reagent for controlled nucleation of zerovalent Fe atom into Fe nanoparticle, and (3) promote the polymerization of degraded Eosin Y with N3MDA yielding an N-doping carbonaceous matrix in NZVI@NC. This discovery of a one-pot photosynthetic process for NZVI@NC inspires continued efforts on its application to photolytic water splitting and ferroptotic chemotherapy in the near future.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Amarelo de Eosina-(YS) , Ferro , Água , Substâncias Redutoras
7.
Chemistry ; 28(30): e202103905, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35318746

RESUMO

The dielectric properties of coordination polymers has been a topic of recent interest, but the role of different functional groups on the dielectric properties of these polymers has not yet been fully addressed. Herein, the effects of electron-donating (R=NH2 ) and electron-withdrawing (R=NO2 ) groups on the dielectric behavior of such materials were investigated for two thermally stable and guest-free Zn-based coordination polymers, [Zn(L1 )(L2 )]n (1) and [Zn(L1 )(L3 )]n (2) [L1 =2-(2-pyridyl) benzimidazole (Pbim), L2 =5-aminoisophthalate (Aip), and L3 =5-nitroisophthalate (Nip)]. The results of dielectric studies of 1 revealed that it possesses a high dielectric constant (κ=65.5 at 1 kHz), while compound 2 displayed an even higher dielectric constant (κ=110.3 at 1 kHz). The electron donating and withdrawing effects of the NH2 and NO2 substituents induce changes in the polarity of the polymers, which is due to the inductive effect from the aryl ring for both NO2 and NH2 . Theoretical results from density functional theory (DFT) calculations, which also support the experimental findings, show that both compounds have a distinct electronic behavior with diverse wide bandgaps. The significance of the current work is to provide information about the structure-dielectric property relationships. So, this study promises to pave the way for further research on the effects of different functional groups on coordination polymers on their dielectric properties.

8.
Inorg Chem ; 60(21): 15874-15889, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34015211

RESUMO

In spite of the comprehensive study of the metal-mediated conversion of NO to N2O disclosing the conceivable processes/mechanism in biological and biomimetic studies, in this study, the synthesis cycles and mechanism of NO reduction to N2O triggered by the electronically localized dinuclear {Fe(NO)2}10-{Fe(NO)2}9 dinitrosyl iron complex (DNIC) [Fe(NO)2(µ-bdmap)Fe(NO)2(THF)] (1) (bdmap = 1,3- bis(dimethylamino)-2-propanolate) were investigated in detail. Reductive conversion of NO to N2O triggered by complex 1 in the presence of exogenous ·NO occurs via the simultaneous formation of hyponitrite-bound {[Fe2(NO)4(µ-bdmap)]2(κ4-N2O2)} (2) and [NO2]--bridged [Fe2(NO)4(µ-bdmap)(µ-NO2)] (3) (NO disproportionation yielding N2O and complex 3). EPR/IR spectra, single-crystal X-ray diffraction, and the electrochemical study uncover the reversible redox transformation of {Fe(NO)2}9-{Fe(NO)2}9 [Fe2(NO)4(µ-bdmap)(µ-OC4H8)]+ (7) ↔ {Fe(NO)2}10-{Fe(NO)2}9 1 ↔ {Fe(NO)2}10-{Fe(NO)2}10 [Fe(NO)2(µ-bdmap)Fe(NO)2]- (6) and characterize the formation of complex 1. Also, the synthesis study and DFT computation feature the detailed mechanism of electronically localized {Fe(NO)2}10-{Fe(NO)2}9 DNIC 1 reducing NO to N2O via the associated hyponitrite-formation and NO-disproportionation pathways. Presumably, the THF-bound {Fe(NO)2}9 unit of electronically localized {Fe(NO)2}10-{Fe(NO)2}9 complex 1 served as an electron buffering reservoir for accommodating electron redistribution, and the {Fe(NO)2}10 unit of complex 1 acted as an electron-transfer channel to drive exogeneous ·NO coordination to yield proposed relay intermediate κ2-N,O-[NO]--bridged [Fe2(NO)4(µ-bdmap)(µ-NO)] (A) for NO reduction to N2O.


Assuntos
Ferro , Óxidos de Nitrogênio
9.
Inorg Chem ; 60(21): 15846-15873, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34009960

RESUMO

The ubiquitous function of nitric oxide (NO) guided the biological discovery of the natural dinitrosyliron unit (DNIU) [Fe(NO)2] as an intermediate/end product after Fe nitrosylation of nonheme cofactors. Because of the natural utilization of this cofactor for the biological storage and delivery of NO, a bioinorganic study of synthetic dinitrosyliron complexes (DNICs) has been extensively explored in the last 2 decades. The bioinorganic study of DNICs involved the development of synthetic methodology, spectroscopic discrimination, biological application of NO-delivery reactivity, and translational application to the (catalytic) transformation of small molecules. In this Forum Article, we aim to provide a systematic review of spectroscopic and computational insights into the bonding nature within the DNIU [Fe(NO)2] and the electronic structure of different types of DNICs, which highlights the synchronized advance in synthetic methodology and spectroscopic tools. With regard to the noninnocent nature of a NO ligand, spectroscopic and computational tools were utilized to provide qualitative/quantitative assignment of oxidation states of Fe and NO in DNICs with different redox levels and ligation modes as well as to probe the Fe-NO bonding interaction modulated by supporting ligands. Besides the strong antiferromagnetic coupling between high-spin Fe and paramagnetic NO ligands within the covalent DNIU [Fe(NO)2], in polynuclear DNICs, the effects of the Fe···Fe distance, nature of the bridging ligands, and type of bridging modes on the regulation of the magnetic coupling among paramagnetic DNIU [Fe(NO)2] are further reviewed. In the last part of this Forum Article, the sequential reaction of {Fe(NO)2}10 DNIC [(NO)2Fe(AMP)] (1-red) with NO(g), HBF4, and KC8 establishes a synthetic cycle, {Fe(NO)2}9-{Fe(NO)2}9 DNIC [(NO)2Fe(µ-dAMP)2Fe(NO)2] (1) → {Fe(NO)2}9 DNIC [(NO2)Fe(AMP)][BF4] (1-H) → {Fe(NO)2}10 DNIC 1-red → DNIC 1, for the transformation of NO into HNO/N2O. Of importance, the NO-induced transformation of {Fe(NO)2}10 DNIC 1-red and [(NO)2Fe(DTA)] (2-red; DTA = diethylenetriamine) unravels a synthetic strategy for preparation of the {Fe(NO)2}9-{Fe(NO)2}9 DNICs [(NO)2Fe(µ-NHR)2Fe(NO)2] containing amido-bridging ligands, which hold the potential to feature distinctive physical properties, chemical reactivities, and biological applications.


Assuntos
Óxidos de Nitrogênio
10.
J Phys Chem Lett ; 11(20): 8538-8542, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32940468

RESUMO

The YtfE protein catalyzes the reduction of NO to N2O, protecting iron-sulfur clusters from nitrosylation. The structure of YtfE has a two-domain architecture, with a diiron-containing C-terminal domain linked to an N-terminal domain, in which the function of the latter is enigmatic. Here, by using electron spin resonance (ESR) spectroscopy, we show that YtfE exists in two conformational states, one of which has not been reported. Under high osmotic stress, YtfE adopts a homogeneous conformation (C state) similar to the known crystal structure. In a regular buffer, the N-terminal domain switches between the C state and a previously unidentified conformation (C' state), the latter of which has more space at the domain interface to allow the trafficking of NO molecules and thus is proposed to be a functionally active state. The conformational switch between the C and C' states is pivotal for facilitating NO access to the diiron core.

11.
Inorg Chem ; 59(12): 8308-8319, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32437613

RESUMO

Despite a comprehensive study on the biosynthesis and function of nitric oxide, biological metabolism of nitric oxide, especially when its concentration exceeds the cytotoxic level, remains elusive. Oxidation of nitric oxide by O2 in aqueous solution has been known to yield NO2-. On the other hand, a biomimetic study on the metal-mediated conversion of NO to NO2-/NO3- via O2 reactivity disclosed a conceivable pathway for aerobic metabolism of NO. During the NO-to-NO3- conversion, transient formation of metal-bound peroxynitrite and subsequent release of •NO2 via O-O bond cleavage were evidenced by nitration of tyrosine residue or 2,4-di-tert-butylphenol (DTBP). However, the synthetic/catalytic/enzymatic cycle for conversion of nitric oxide into a nitrite pool is not reported. In this study, sequential reaction of the ferrous complex [(PMDTA)Fe(κ2-O,O'-NO2)(κ1-O-NO2)] (3; PMDTA = pentamethyldiethylenetriamine) with NO(g), KC8, and O2 established a synthetic cycle, complex 3 → {Fe(NO)2}9 DNIC [(PMDTA)Fe(NO)2][NO2] (4) → {Fe(NO)2}10 DNIC [(PMDTA)Fe(NO)2] (1) → [(PMDTA)(NO)Fe(κ2-O,N-ONOO)] (2) → complex 3, for the transformation of nitric oxide into nitrite. In contrast to the reported reactivity of metal-bound peroxynitrite toward nitration of DTBP, peroxynitrite-bound MNIC 2 lacks phenol nitration reactivity toward DTBP. Presumably, the [(PMDTA)Fe] core in {Fe(NO)}8 MNIC 2 provides a mononuclear template for intramolecular interaction between Fe-bound peroxynitrite and Fe-bound NO-, yielding Fe-bound nitrite stabilized in the form of complex 3. This [(PMDTA)Fe]-core-mediated concerted peroxynitrite homolytic O-O bond cleavage and combination of the O atom with Fe-bound NO- reveals a novel and effective pathway for NO-to-NO2- transformation. Regarding the reported assembly of the dinitrosyliron unit (DNIU) [Fe(NO)2] in the biological system, this synthetic cycle highlights DNIU as a potential intermediate for nitric oxide monooxygenation activity in a nonheme iron system.


Assuntos
Complexos de Coordenação/química , Compostos Férricos/química , Compostos Ferrosos/química , Óxido Nítrico/química , Nitritos/química , Poliaminas/química , Complexos de Coordenação/síntese química , Estrutura Molecular , Oxigênio/química
12.
Angew Chem Int Ed Engl ; 59(29): 11819-11823, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32281729

RESUMO

Continued efforts are made for the utilization of CO2 as a C1 feedstock for regeneration of valuable chemicals and fuels. Mechanistic study of molecular (electro-/photo-)catalysts disclosed that initial step for CO2 activation involves either nucleophilic insertion or direct reduction of CO2 . In this study, nucleophilic activation of CO2 by complex [(NO)2 Fe(µ-Me Pyr)2 Fe(NO)2 ]2- (2, Me Pyr=3-methylpyrazolate) results in the formation of CO2 -captured complex [(NO)2 Fe(Me PyrCO2 )]- (2-CO2 , Me PyrCO2 =3-methyl-pyrazole-1-carboxylate). Single-crystal structure, spectroscopic, reactivity, and computational study unravels 2-CO2 as a unique intermediate for reductive transformation of CO2 promoted by Ca2+ . Moreover, sequential reaction of 2 with CO2 , Ca(OTf)2 , and KC8 established a synthetic cycle, 2 → 2-CO2 → [(NO)2 Fe(µ-Me Pyr)2 Fe(NO)2 ] (1) → 2, for selective conversion of CO2 into oxalate. Presumably, characterization of the unprecedented intermediate 2-CO2 may open an avenue for systematic evaluation of the effects of alternative Lewis acids on reduction of CO2 .

13.
Mol Pharm ; 16(10): 4241-4251, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31436106

RESUMO

In diabetes, abnormal angiogenesis due to hyperglycemia and endothelial dysfunction impairs wound healing and results in high risks of diabetic foot ulcers and mortality. Alternative therapeutic methods were attempted to prevent diabetic complications through the activation of endothelial nitric oxide synthase. In this study, direct application of nitric oxide using dinitrosyl iron complexes (DNICs) to promote angiogenesis and wound healing under physiological conditions and in diabetic mice is investigated. Based on in vitro and in vivo studies, DNIC [Fe2(µ-SCH2CH2OH)2(NO)4] (DNIC-1) with a sustainable NO-release reactivity (t1/2 = 27.4 ± 0.5 h at 25 °C and 16.8 ± 1.8 h at 37 °C) activates the NO-sGC-cGMP pathway and displays the best pro-angiogenesis activity overwhelming other NO donors and the vascular endothelial growth factor. Moreover, this pro-angiogenesis effect of DNIC-1 restores the impaired angiogenesis in the ischemic hind limb and accelerates the recovery rate of wound closure in diabetic mice. This study translates synthetic DNIC-1 into a novel therapeutic agent for the treatment of diabetes and highlights its sustainable •NO-release reactivity on the activation of angiogenesis and wound healing.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Ferro/administração & dosagem , Neovascularização Patológica/prevenção & controle , Óxido Nítrico/metabolismo , Óxidos de Nitrogênio/administração & dosagem , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/prevenção & controle , Animais , Sobrevivência Celular , Células Cultivadas , Embrião de Galinha , Membrana Corioalantoide/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Membro Posterior , Humanos , Isquemia/patologia , Isquemia/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Óxido Nítrico/química , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ferimentos e Lesões/patologia , Peixe-Zebra
14.
Inorg Chem ; 58(15): 9586-9591, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31294544

RESUMO

Flavodiiron nitric oxide reductases (FNORs) evolved in some pathogens are known to detoxify NO via two-electron reduction to N2O to mitigate nitrosative stress. In this study, we describe how the electronically localized {Fe(NO)2}10-{Fe(NO)2}9 dinuclear dinitrosyl iron complex (dinuclear DNIC) [(NO)2Fe(µ-bdmap)Fe(NO)2(THF)] (2) (bdmap = 1,3-bis(dimethylamino)-2-propanolate) can induce a reductive coupling of NO to form hyponitrite-coordinated tetranuclear DNIC, which then converts to N2O. Upon the addition of 1 equiv of NO into the dinuclear {Fe(NO)2}10-{Fe(NO)2}9 DNIC 2, the proposed side-on-bound [NO]--bridged [(NO)2Fe(µ-bdmap)(κ2-NO) Fe(NO)2] intermediate may facilitate intermolecular (O)N-N(O) bond coupling to yield the paramagnetic tetranuclear quadridentate trans-hyponitrite-bound {[(NO)2Fe(µ-bdmap)Fe(NO)2]2(κ4-N2O2)} that transforms to [Fe(NO)2(µ-bdmap)]2, along with the release of N2O upon Hbdmap (1,3-bis(dimethylamino)-2-propanol) added.

15.
Dalton Trans ; 48(18): 6040-6050, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30734799

RESUMO

The synthesis, characterization and transformation of the thermally unstable {Fe(NO)2}9 dinitrosyl iron complex (DNIC) [(OMe)2Fe(NO)2]- (2) were investigated. The {Fe(NO)2}9 DNIC 2 characterized by single-crystal X-ray diffraction is exclusively stabilized by the weak intermolecular [Fe(OMe)2(K+)] interactions (O(3)K(1) and O(4)K(1) distances of 2.818(3) and 2.810(3) Å, respectively). The binding affinity of chalcogenolate-containing ligands toward the {Fe(NO)2}9 motif follows the series [SEt]- > [SPh]- > [OPh]- > [OMe]-, which is dictated by the synergistic cooperation of the electron-donating order ([SEt]- > [SPh]- > [OPh]-) and the soft-hard order (from soft to hard, [SEt]- ∼ [SPh]- > [OPh]- > [OMe]-). In comparison with the XAS Fe K-edge pre-edge energy of {Fe(NO)2}9 [(RS)2Fe(NO)2]- (R = Ph (4), Et (5)) and [(PhO)2Fe(NO)2]- (6) DNICs falling within the reported range of 7113.4-7113.9 eV, the distinctive pre-edge energy of 7114.2 eV exhibited by complex 2 suggests that the electronic structure of {Fe(NO)2}9 DNIC 2 may be qualitatively described as a {FeIII(NO-)2}9 electronic structure induced by the dominant ionic character of Fe-OMe bonds, instead of the resonance hybrids of {FeII(NO-)(˙NO)}9 and {FeIII(NO-)2}9 electronic structures induced by the dominant metal-ligand covalency of {Fe(NO)2}9 DNICs 4-6. As shown in TD-DFT computation, the increased population of NO ligands in MO 125ß (45.1% NO) attenuating the OMe-induced polarization imposed on the Fe center through the delocalized covalent nature of Fe-NO bonds supports the lower/synergistic NO/OMe → Fe charge transfer energy (1216 nm) observed in the solid-state UV-vis spectrum of complex 2 compared to those (1140 nm) of complexes 4-6.

16.
Inorg Chem ; 57(23): 14715-14726, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30452243

RESUMO

Electron paramagnetic resonance, IR, single-crystal X-ray diffraction, and density functional theory computation reveal that the electronic structure of α-diimine-coordinated {Fe(NO)2}10-reduced dinitrosyliron complexes (DNICs) may best be described as [{Fe(NO)2}10-L•], with the added electron residing mainly on the α-diimine ligand framework. The combination of electrochemistry, gas chromatography, Fourier transform infrared, X-ray photoelectron spectroscopy, and scanning electron microscopy-energy-dispersive X-ray studies demonstrates that the cathodic potential promotes/triggers the transformation of an α-diimine-coordinated {Fe(NO)2}10-reduced DNIC into a particulate deposit on the electrode, and electrodeposited-film electrodes, CFeO and CFeNO, are kinetically dominant electrocatalysts responsible for hydrogen evolution reaction (HER) from water with quantitative Faradaic efficiency. In comparison with the CFeO electrode reaching a current density of 10 mA/cm2 with an overpotential of 333 mV for HER, the nitrogen-doped iron oxide electrode, CFeNO, requires 147 mV of overpotential to achieve a current density of 10 mA/cm2 in a 1 M NaOH aqueous solution. The CFeNO electrode exhibits higher kinetic efficiency (Tafel slope of 59 mV/dec) than the CFeO electrode (Tafel slope of 122 mV/dec) in alkaline conditions. As opposed to high Rct (74.3 Ω) displayed by the CFeO electrode, the smaller charge-transfer resistance ( Rct) of the CFeNO electrode (34.0 Ω) demonstrated that the better HER catalytic activity may be ascribed to the incorporation of nitrogen into iron oxide architecture, which increases the surface roughness and electroconductivity of the CFeNO electrode (56.9% iron content and nitrogen electron-donating effect) and improves HER catalysis by polarizing the incoming water molecule (acting as a proton tray). This result implicates that a (NH4)2SO4-assisted nitrogen-doping strategy is a direct and effective method to realize synergistic regulation of the reaction dynamics, catalytically active sites and electronic conductivity, endowing this nitrogen-doped material CFeNO electrode as a promising HER electrocatalyst under alkaline conditions.

17.
Molecules ; 23(10)2018 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-30301224

RESUMO

Nitroxyl (HNO) plays a critical role in many physiological processes which includes vasorelaxation in heart failure, neuroregulation, and myocardial contractility. Powerful imaging tools are required to obtain information for understanding the mechanisms involved in these in vivo processes. In order to develop a rapid and high sensitive probe for HNO detection in living cells and the zebrafish model organism, 2-((2-(benzothiazole-2yl)benzylidene) amino)benzoic acid (AbTCA) as a ligand, and its corresponding copper(II) complex Cu(II)-AbTCA were synthesized. The reaction results of Cu(II)-AbTCA with Angeli's salt showed that Cu(II)-AbTCA could detect HNO quantitatively in a range of 40⁻360 µM with a detection limit of 9.05 µM. Furthermore, Cu(II)-AbTCA is more selective towards HNO over other biological species including thiols, reactive nitrogen, and reactive oxygen species. Importantly, Cu(II)-AbTCA was successfully applied to detect HNO in living cells and zebrafish. The collective data reveals that Cu(II)-AbTCA could be used as a potential probe for HNO detection in living systems.


Assuntos
Cobre/química , Óxidos de Nitrogênio/química , Peixe-Zebra , Animais , Corantes Fluorescentes/química , Humanos , Nitritos/química , Óxidos de Nitrogênio/farmacologia
18.
Inorg Chem ; 57(20): 12425-12443, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30247022

RESUMO

Identification of the distinctive electron paramagnetic resonance signal at g = 2.03 in the yeast cells and liver of mice treated with carcinogens opened the discovery and investigation of the natural [Fe(NO)2] motif in the form of dinitrosyliron complexes (DNICs). In this Viewpoint, a chronological collection of the benchmark for the study of DNIC demonstrates that the preceding study of its biological synthesis, storage, transport, transformation, and function related to NO physiology inspires the biomimetic study of structural and functional models supported by thiolate ligands to provide mechanistic insight at a molecular level. During the synthetic, spectroscopic, and theoretical investigations on the structure-to-reactivity relationship within DNICs, control of the Fe-NO bonding interaction and of the delivery of NO+/•NO/HNO/NO- by the supporting ligands and nuclearity evolves into the "redesign of the natural [Fe(NO)2] motif" as a strategy to develop DNICs for NO-related biomedical application and therapeutic approach. The revolutionary transformation of covalent a [Fe(NO)2] motif into a translational model for hydrogenase, triggered by the discovery of redox interconversion among [{Fe(NO)2}9-L•] ↔ {Fe(NO)2}9 ↔ {Fe(NO)2}10 ↔ [{Fe(NO)2}10-L•]-, echoes the preceding research journey on [Fe]/[NiFe]-hydrogenase and completes the development of an electrodeposited-film electrode for electrocatalytic water splitting. Through the 50-year journey, bioinorganic chemistry of DNIC containing the covalent [Fe(NO)2] motif and noninnocent/labile NO ligands highlights itself as a unique metallocofactor to join the longitudinal study between biology/chemistry/biomedical application and the lateral study toward multielectron (photo/electro)catalysis for industrial application. This Viewpoint discloses the potential [Fe(NO)2] motif awaiting continued contribution in order to emerge as a novel application in the next 50 years, whereas the parallel development of bioinorganic chemistry, guided by inspirational Nature, moves the science forward to the next stage in order to benefit the immediate needs for human activity.


Assuntos
Carcinógenos/toxicidade , Compostos de Ferro/química , Óxidos de Nitrogênio/química , Leveduras/efeitos dos fármacos , Animais , Compostos de Ferro/metabolismo , Fígado/química , Fígado/metabolismo , Óxidos de Nitrogênio/metabolismo , Análise Espectral , Leveduras/metabolismo
19.
J Biol Inorg Chem ; 23(5): 775-784, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29858679

RESUMO

The ubiquitous and emerging physiology function of endogenous nitric oxide in vascular, myocardial, immune, and neuronal systems prompts chemists to develop a prodrug for the controlled delivery of ·NO in vivo and for the translational biomedical application. Inspired by the discovery of natural [Fe(NO)2] motif, herein, we develop the synthetic dinitrosyl iron complexes (DNICs) [Fe2(µ-SR)2(NO)4] (1) as a universal platform for the O2-triggered release of ·NO, for the regulation of ·NO-release kinetics (half-life = 0.6-27.4 h), and for the activation of physiological function of ·NO. Using C. elegans as a model organism, the ·NO-delivery DNIC 1 regulates IIS signaling pathway, AMPK signaling pathway, and mitochondrial function pathway to extend the lifespan and to delay the aging process based on the lifespan analysis, SA-ßgal activity assay, and next-generation RNA sequencing analysis. This study unveils the anti-aging effect of ·NO and develops DNICs as a chemical biology probe for the continued discovery of unprecedented NO physiology.


Assuntos
Caenorhabditis elegans/fisiologia , Ferro/química , Longevidade , Óxido Nítrico/administração & dosagem , Óxidos de Nitrogênio/química , Adenilato Quinase/metabolismo , Animais , Caenorhabditis elegans/genética , Meia-Vida , Cinética , Estrutura Molecular , Óxido Nítrico/química , Análise de Sequência de RNA , Transdução de Sinais , Análise Espectral/métodos
20.
Dalton Trans ; 47(21): 7128-7134, 2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29756619

RESUMO

In artificial photosynthesis, water splitting plays an important role for the conversion and storage of renewable energy sources. Here, we report a study on the electrocatalytic properties of the electrodeposited-film electrodes derived from irreversible electro-reduction/-oxidation of a molecular dinitrosyl iron complex (DNIC) {Fe(NO)2}9 [(Me6tren)Fe(NO)2]+ (Me6tren = tris[2-(dimethylamino)ethyl]amine) for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline solution, individually. For HER, the overpotential and Tafel slope for the electrodeposited-film cathode are lower than those of the equiv.-weight Pt/C electrode. The electrodeposited-film anode for the OER is stable for 139 h. Integration of the electrodeposited-film cathode and anode into a single electrode-pair device for electrocatalytic water splitting exhibits an onset voltage of 1.77 V, achieving a geometrical current density of 10 mA cm-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...