Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39016170

RESUMO

The endonuclease activity of Pms1 directs mismatch repair by generating a nick in the newly replicated DNA strand. Inactivating Pms2, the human homologue of yeast Pms1, increases the chances of colorectal and uterine cancers. Here we use whole genome sequencing to show that loss of this endonuclease activity, via the pms1-DE variant, results in strong mutator effects throughout the Saccharomyces cerevisiae genome. Mutation rates are strongly increased for mutations resulting from all types of single-base substitutions and for a wide variety of single- and multi-base indel mutations. Rates for these events are further increased in strains combining pms1-DE with mutator variants of each of the three major leading and lagging strand replicases. In all cases, mutation rates, spectra, biases, and context preferences are statistically indistinguishable from strains with equivalent polymerases but lacking initial mismatch recognition due to deletion of MSH2. This implies that, across the nuclear genome, strand discrimination via the Pms1 endonuclease is as important for MMR as is initial mismatch recognition by Msh2 heterodimers.

2.
Nucleic Acids Res ; 47(9): 4597-4611, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30838410

RESUMO

Telomeric regions of the genome are inherently difficult-to-replicate due to their propensity to generate DNA secondary structures and form nucleoprotein complexes that can impede DNA replication fork progression. Precisely how cells respond to DNA replication stalling within a telomere remains poorly characterized, largely due to the methodological difficulties in analysing defined stalling events in molecular detail. Here, we utilized a site-specific DNA replication barrier mediated by the 'Tus/Ter' system to define the consequences of DNA replication perturbation within a single telomeric locus. Through molecular genetic analysis of this defined fork-stalling event, coupled with the use of a genome-wide genetic screen, we identified an important role for the SUMO-like domain protein, Esc2, in limiting genome rearrangements at a telomere. Moreover, we showed that these rearrangements are driven by the combined action of the Mph1 helicase and the homologous recombination machinery. Our findings demonstrate that chromosomal context influences cellular responses to a stalled replication fork and reveal protective factors that are required at telomeric loci to limit DNA replication stress-induced chromosomal instability.


Assuntos
RNA Helicases DEAD-box/genética , Replicação do DNA/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Telômero/genética , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Recombinação Homóloga/genética , Conformação de Ácido Nucleico , Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 45(16): 9427-9440, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28934474

RESUMO

DNA mismatch repair (MMR) is a highly-conserved DNA repair mechanism, whose primary role is to remove DNA replication errors preventing them from manifesting as mutations, thereby increasing the overall genome stability. Defects in MMR are associated with increased cancer risk in humans and other organisms. Here, we characterize the interaction between MMR and a proofreading-deficient allele of the human replicative DNA polymerase delta, PolδD316A;E318A, which has a higher capacity for strand displacement DNA synthesis than wild type Polδ. Human cell lines overexpressing PolδD316A;E318A display a mild mutator phenotype, while nuclear extracts of these cells exhibit reduced MMR activity in vitro, and these defects are complemented by overexpression or addition of exogenous human Exonuclease 1 (EXO1). By contrast, another proofreading-deficient mutant, PolδD515V, which has a weaker strand displacement activity, does not decrease the MMR activity as significantly as PolδD316A;E318A. In addition, PolδD515V does not increase the mutation frequency in MMR-proficient cells. Based on our findings, we propose that the proofreading activity restricts the strand displacement activity of Polδ in MMR. This contributes to maintain the nicks required for EXO1 entry, and in this manner ensures the dominance of the EXO1-dependent MMR pathway.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA Polimerase III/metabolismo , Mutação , Metilação de DNA/efeitos dos fármacos , DNA Polimerase III/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Células HeLa , Humanos , Metilnitronitrosoguanidina/farmacologia
4.
Proc Natl Acad Sci U S A ; 114(36): 9665-9670, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827358

RESUMO

Proliferating cells acquire genome alterations during the act of DNA replication. This leads to mutation accumulation and somatic cell mosaicism in multicellular organisms, and is also implicated as an underlying cause of aging and tumorigenesis. The molecular mechanisms of DNA replication-associated genome rearrangements are poorly understood, largely due to methodological difficulties in analyzing specific replication forks in vivo. To provide an insight into this process, we analyzed the mutagenic consequences of replication fork stalling at a single, site-specific replication barrier (the Escherichia coli Tus/Ter complex) engineered into the yeast genome. We demonstrate that transient stalling at this barrier induces a distinct pattern of genome rearrangements in the newly replicated region behind the stalled fork, which primarily consist of localized losses and duplications of DNA sequences. These genetic alterations arise through the aberrant repair of a single-stranded DNA gap, in a process that is dependent on Exo1- and Shu1-dependent homologous recombination repair (HRR). Furthermore, aberrant processing of HRR intermediates, and elevated HRR-associated mutagenesis, is detectable in a yeast model of the human cancer predisposition disorder, Bloom's syndrome. Our data reveal a mechanism by which cellular responses to stalled replication forks can actively generate genomic alterations and genetic diversity in normal proliferating cells.


Assuntos
Replicação do DNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Genes Reporter , Engenharia Genética , Humanos , Modelos Biológicos , Mutagênese , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reparo de DNA por Recombinação , Origem de Replicação , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
DNA Repair (Amst) ; 31: 41-51, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25996407

RESUMO

Mismatches generated during eukaryotic nuclear DNA replication are removed by two evolutionarily conserved error correction mechanisms acting in series, proofreading and mismatch repair (MMR). Defects in both processes are associated with increased susceptibility to cancer. To better understand these processes, we have quantified base selectivity, proofreading and MMR during nuclear DNA replication in Saccharomyces cerevisiae. In the absence of proofreading and MMR, the primary leading and lagging strand replicases, polymerase ɛ and polymerase δ respectively, synthesize DNA in vivo with somewhat different error rates and specificity, and with apparent base selectivity that is more than 100 times higher than measured in vitro. Moreover, leading and lagging strand replication fidelity rely on a different balance between proofreading and MMR. On average, proofreading contributes more to replication fidelity than does MMR, but their relative contributions vary from nearly all proofreading of some mismatches to mostly MMR of other mismatches. Thus accurate replication of the two DNA strands results from a non-uniform and variable balance between error prevention, proofreading and MMR.


Assuntos
Reparo de Erro de Pareamento de DNA , Replicação do DNA , Saccharomyces cerevisiae/genética , Pareamento Incorreto de Bases , Sequência de Bases , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
DNA Repair (Amst) ; 12(2): 92-6, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23245696

RESUMO

The Saccharomyces cerevisiae EXO1 gene encodes a 5' exonuclease that participates in mismatch repair (MMR) of DNA replication errors. Deleting EXO1 was previously shown to increase mutation rates to a greater extent when combined with a mutator variant (pol3-L612M) of the lagging strand replicase, DNA polymerase δ (Pol δ), than when combined with a mutator variant (pol2-M644G) of the leading strand replicase, DNA polymerase ɛ (Pol ɛ). Here we confirm that result, and extend the approach to examine the effect of deleting EXO1 in a mutator variant (pol1-L868M) of Pol α, the proofreading-deficient and least accurate of the three nuclear replicases that is responsible for initiating Okazaki fragment synthesis. We find that deleting EXO1 increases the mutation rate in the Pol α mutator strain to a significantly greater extent than in the Pol δ or Pol ɛ mutator strains, thereby preferentially reducing the efficiency of MMR of replication errors generated by Pol α. Because these mismatches are closer to the 5' ends of Okazaki fragments than are mismatches made by Pol δ or Pol ɛ, the results not only support the previous suggestion that Exo1 preferentially excises lagging strand replication errors during mismatch repair, they further imply that the 5' ends serve as entry points for 5' excision of replication errors made by Pol α, and possibly as strand discrimination signals for MMR. Nonetheless, mutation rates in the Pol α mutator strain are 5- to 25-fold lower in an exo1Δ strain as compared to an msh2Δ strain completely lacking MMR, indicating that in the absence of Exo1, most replication errors made by Pol α can still be removed in an Msh2-dependent manner by other nucleases and/or by strand displacement.


Assuntos
Reparo de Erro de Pareamento de DNA , DNA Polimerase I/metabolismo , DNA Fúngico/genética , Exodesoxirribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Pareamento Incorreto de Bases , Sequência de Bases , DNA/biossíntese , DNA Polimerase I/genética , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Replicação do DNA , DNA Fúngico/metabolismo , Exodesoxirribonucleases/genética , Deleção de Genes , Dados de Sequência Molecular , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Taxa de Mutação , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética
7.
DNA Repair (Amst) ; 10(1): 73-86, 2011 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-20970388

RESUMO

Human exonuclease 1 (hEXO1) is implicated in DNA metabolism, including replication, recombination and repair, substantiated by its interactions with PCNA, DNA helicases BLM and WRN, and several DNA mismatch repair (MMR) proteins. We investigated the sub-nuclear localization of hEXO1 during S-phase progression and in response to laser-induced DNA double strand breaks (DSBs). We show that hEXO1 and PCNA co-localize in replication foci. This apparent interaction is sustained throughout S-phase. We also demonstrate that hEXO1 is rapidly recruited to DNA DSBs. We have identified a PCNA interacting protein (PIP-box) region on hEXO1 located in its COOH-terminal ((788)QIKLNELW(795)). This motif is essential for PCNA binding and co-localization during S-phase. Recruitment of hEXO1 to DNA DSB sites is dependent on the MMR protein hMLH1. We show that two distinct hMLH1 interaction regions of hEXO1 (residues 390-490 and 787-846) are required to direct the protein to the DNA damage site. Our results reveal that protein domains in hEXO1 in conjunction with specific protein interactions control bi-directional routing of hEXO1 between on-going DNA replication and repair processes in living cells.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo de Erro de Pareamento de DNA/fisiologia , Enzimas Reparadoras do DNA/metabolismo , Replicação do DNA/fisiologia , Exodesoxirribonucleases/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Motivos de Aminoácidos , Substituição de Aminoácidos , Animais , DNA/genética , DNA/metabolismo , Reparo de Erro de Pareamento de DNA/efeitos da radiação , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/efeitos da radiação , Células HeLa , Humanos , Lasers/efeitos adversos , Camundongos , Proteína 1 Homóloga a MutL , Proteína 3 Homóloga a MutS , Células NIH 3T3 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Transporte Proteico/genética , Transporte Proteico/efeitos da radiação , RecQ Helicases/genética , RecQ Helicases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/efeitos da radiação , Fase S , Helicase da Síndrome de Werner
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...