Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(7): e0216190, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32639984

RESUMO

Understanding how bees use resources at a landscape scale is essential for developing meaningful management plans that sustain populations and the pollination services they provide. Bumblebees are important pollinators for many wild and cultivated plants, and have experienced steep population declines worldwide. Bee foraging behavior can be influenced by resource availability and bees' lifecycle stage. To better understand these relationships, we studied the habitat selection of Bombus pauloensis by tracking 17 queen bumblebees with radio telemetry in blueberry fields in Entre Ríos province, Argentina. To evaluate land use and floral resources used by bumblebees, we tracked bees before and after nest establishment and estimated home ranges using minimum convex polygons and kernel density methods. We also classified the pollen on their bodies to identify the floral resources they used from the floral species available at that time. We characterized land use for each bee as the relative proportion of GPS points inside of each land use. Bumblebees differed markedly in their movement behavior in relation to pre and post nest establishment. Bees moved over larger areas, and mostly within blueberry fields, before nest establishment. In contrast, after establishing the nest, the bees preferred the edges near forest plantations and they changed the nutritional resources to prefer wild floral species. Our study is the first to track queen bumblebee movements in an agricultural setting and relate movement changes across time and space with pollen resource availability. This study provides insight into the way bumblebee queens use different habitat elements at crucial periods in their lifecycle, showing the importance of mass flowering crops like blueberry in the first stages of queen's lifecycle, and how diversified landscapes help support bee populations as their needs changes during different phases of their lifecycle.


Assuntos
Agricultura , Abelhas/fisiologia , Polinização/fisiologia , Animais , Mirtilos Azuis (Planta) , Comportamento de Retorno ao Território Vital , Densidade Demográfica , Análise Espaço-Temporal
2.
Tree Physiol ; 39(4): 679-693, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30597089

RESUMO

We assessed the effects of heater wattage on sap flux estimates from heat dissipation sensors and generated calibrated equations for 1-year-old Eucalyptus grandis Hill ex Maiden trees. We used a total of eight trees ranging from 3 to 6 cm in diameter. Our calibration experiment was performed with a modified tree-cut approach, which allowed us to estimate gravimetric water use manually weighing 20 l buckets every 15 min while sap flux was monitored on each tree. Our results indicate that changes the current supplied to the heaters from 0.15 to 0.25 W does not significantly influence sap flux estimates, as long as the maximum temperature (Tmax) is properly determined for each period when wattage is different, and natural temperature gradients are corrected. Using the original parameters developed for this method, sap flux density and sap flow had an average underestimation of 53%, which according to our analysis had a reduced but relevant correlation with tree diameter (R2 = 0.3, linear regression). These results may allow researchers to supply different currents to heat dissipation sensors to increase sensitivity or to reduce power consumption. They also provide evidence in favor of the correction and use of raw data collected when unwanted changes in wattage occur. The relationship observed between estimation error and tree diameter, while not strongly significant, suggests that diameter plays an important role in the estimation errors that has not been previously considered, and requires further research.


Assuntos
Eucalyptus/fisiologia , Transpiração Vegetal/fisiologia , Água/fisiologia , Transporte Biológico , Calibragem , Temperatura Alta , Caules de Planta/fisiologia , Árvores
4.
Artigo em Inglês | MEDLINE | ID: mdl-30297479

RESUMO

Tree transpiration is important in the recycling of precipitation in the Amazon and might be negatively affected by El Niño-Southern Oscillation (ENSO)-induced droughts. To investigate the relative importance of soil moisture deficits versus increasing atmospheric demand (VPD) and determine if these drivers exert different controls over tree transpiration during the wet season versus the dry season (DS), we conducted sap flow measurements in a primary lowland tropical forest in eastern Amazon during the most extreme ENSO-induced drought (2015/2016) recorded in the Amazon. We also assessed whether trees occupying different canopy strata contribute equally to the overall stand transpiration (Tstand). Canopy trees were the primary source of Tstand However, subcanopy trees are still important as they transpired an amount similar to other biomes around the globe. Tree water use was higher during the DS, indicating that during extreme drought trees did not reduce transpiration in response to low soil moisture. Photosynthetically active radiation and VPD exerted an overriding effect on water use patterns relative to soil moisture during extreme drought, indicating that light and atmospheric constraints play a critical role in controlling ecosystem fluxes of water. Our study highlights the importance of canopy and subcanopy trees to the regional water balance and highlights the resilience to droughts that these trees show during an extreme ENSO event.This article is part of a discussion meeting issue 'The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


Assuntos
Secas , El Niño Oscilação Sul , Florestas , Transpiração Vegetal , Árvores/fisiologia , Brasil , Estações do Ano , Solo/química , Água/metabolismo
5.
Environ Manage ; 56(6): 1295-314, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25813630

RESUMO

Large-scale bioenergy production will affect the hydrologic cycle in multiple ways, including changes in canopy interception, evapotranspiration, infiltration, and the quantity and quality of surface runoff and groundwater recharge. As such, the water footprints of bioenergy sources vary significantly by type of feedstock, soil characteristics, cultivation practices, and hydro-climatic regime. Furthermore, water management implications of bioenergy production depend on existing land use, relative water availability, and competing water uses at a watershed scale. This paper reviews previous research on the water resource impacts of bioenergy production-from plot-scale hydrologic and nutrient cycling impacts to watershed and regional scale hydro-economic systems relationships. Primary gaps in knowledge that hinder policy development for integrated management of water-bioenergy systems are highlighted. Four case studies in the Americas are analyzed to illustrate relevant spatial and temporal scales for impact assessment, along with unique aspects of biofuel production compared to other agroforestry systems, such as energy-related conflicts and tradeoffs. Based on the case studies, the potential benefits of integrated resource management are assessed, as is the need for further case-specific research.


Assuntos
Biocombustíveis , Conservação de Recursos Energéticos/tendências , Política Ambiental , Agricultura/métodos , Agricultura/tendências , América , Água Subterrânea/química , Rios/química , Solo , Água/química , Ciclo Hidrológico , Movimentos da Água , Qualidade da Água
6.
Oecologia ; 145(1): 9-20, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15959823

RESUMO

The carbon isotope signature (delta13C) of foliar cellulose from sunlit tops of trees typically becomes enriched as trees of the same species in similar environments grow taller, indicative of size-related changes in leaf gas exchange. However, direct measurements of gas exchange in common environmental conditions do not always reveal size-related differences, even when there is a distinct size-related trend in delta13C of the very foliage used for the gas exchange measurements. Since delta13C of foliage predominately reflects gas exchange during spring when carbon is incorporated into leaf cellulose, this implies that gas exchange differences in different-sized trees are most likely to occur in favorable environmental conditions during spring. If gas exchange differs with tree size during wet but not dry conditions, then this further implies that environmental sensitivity of leaf gas exchange varies as a function of tree size. These implications are consistent with theoretical relationships among height, hydraulic conductance and gas exchange. We investigated the environmental sensitivity of gas exchange in different-sized Douglas-fir (Pseudotsuga menziesii) via a detailed process model that specifically incorporates size-related hydraulic conductance [soil-plant-atmosphere (SPA)], and empirical measurements from both wet and dry periods. SPA predicted, and the empirical measurements verified, that differences in gas exchange associated with tree size are greatest in wet and mild environmental conditions and minimal during drought. The results support the hypothesis that annual net carbon assimilation and transpiration of trees are limited by hydraulic capacity as tree size increases, even though at particular points in time there may be no difference in gas exchange between different-sized trees. Maximum net ecosystem exchange occurs in spring in Pacific Northwest forests; therefore, the presence of hydraulic limitations during this period may play a large role in carbon uptake differences with stand-age. The results also imply that the impacts of climate change on the growth and physiology of forest trees will vary depending on the age and size of the forest.


Assuntos
Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Pseudotsuga/metabolismo , Isótopos de Carbono , Meio Ambiente , Modelos Teóricos , Fotossíntese , Transpiração Vegetal , Pseudotsuga/crescimento & desenvolvimento , Solo/análise , Árvores , Washington , Água/análise , Água/metabolismo
7.
Tree Physiol ; 24(8): 879-90, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15172838

RESUMO

An in vivo method for diagnosing hydraulic characteristics of branches and whole trees is described. The method imposes short-lived perturbations of transpiration and traces the propagation of the hydraulic response through trees. The water uptake response contains the integrated signature of hydraulic resistance and capacitance within trees. The method produces large signal to noise ratios for analysis, but does not cause damage or destruction to tree stems or branches. Based on results with two conifer tree species, we show that the method allows for the simple parameterization of bulk hydraulic resistance and capacitance of trees. Bulk tree parameterization of resistance and capacitance predicted the overall diel shape of water uptake, but did not predict the overshoot water uptake response in trees to shorter-term variations in transpiration, created by step changes in transpiration rate. Stomatal dynamics likely complicated the use of simple resistance-capacitance models of tree water transport on these short time scales. The results provide insight into dominant hydraulic and physiological factors controlling tree water flux on varying time scales, and allow for the practical assessment of necessary tree hydraulic model complexity in relation to the time step of soil- vegetation-atmosphere transport models.


Assuntos
Árvores/fisiologia , Modelos Biológicos , Picea/fisiologia , Pinus/fisiologia , Caules de Planta/fisiologia , Transpiração Vegetal/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...