Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 15: 552, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24993029

RESUMO

BACKGROUND: Wine fermentation is a harsh ecological niche to which wine yeast are well adapted. The initial high osmotic pressure and acidity of grape juice is followed by nutrient depletion and increasing concentrations of ethanol as the fermentation progresses. Yeast's adaptation to these and many other environmental stresses, enables successful completion of high-sugar fermentations. Earlier transcriptomic and growth studies have tentatively identified genes important for high-sugar fermentation. Whilst useful, such studies did not consider extended growth (>5 days) in a temporally dynamic multi-stressor environment such as that found in many industrial fermentation processes. Here, we identify genes whose deletion has minimal or no effect on growth, but results in failure to achieve timely completion of the fermentation of a chemically defined grape juice with 200 g L-1 total sugar. RESULTS: Micro- and laboratory-scale experimental fermentations were conducted to identify 72 clones from ~5,100 homozygous diploid single-gene yeast deletants, which exhibited protracted fermentation in a high-sugar medium. Another 21 clones (related by gene function, but initially eliminated from the screen because of possible growth defects) were also included. Clustering and numerical enrichment of genes annotated to specific Gene Ontology (GO) terms highlighted the vacuole's role in ion homeostasis and pH regulation, through vacuole acidification. CONCLUSION: We have identified 93 genes whose deletion resulted in the duration of fermentation being at least 20% longer than the wild type. An extreme phenotype, 'stuck' fermentation, was also observed when DOA4, NPT1, PLC1, PTK2, SIN3, SSQ1, TPS1, TPS2 or ZAP1 were deleted. These 93 Fermentation Essential Genes (FEG) are required to complete an extended high-sugar (wine-like) fermentation. Their importance is highlighted in our Fermentation Relevant Yeast Genes (FRYG) database, generated from literature and the fermentation-relevant phenotypic characteristics of null mutants described in the Saccharomyces Genome Database. The 93-gene set is collectively referred to as the 'Fermentome'. The fact that 10 genes highlighted in this study have not previously been linked to fermentation-related stresses, supports our experimental rationale. These findings, together with investigations of the genetic diversity of industrial strains, are crucial for understanding the mechanisms behind yeast's response and adaptation to stresses imposed during high-sugar fermentations.


Assuntos
Fermentação/genética , Saccharomyces cerevisiae/genética , Transcriptoma , Deleção de Genes , Genes Fúngicos , Engenharia Genética , Concentração de Íons de Hidrogênio , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vinho/microbiologia
2.
Appl Microbiol Biotechnol ; 89(5): 1621-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21076919

RESUMO

High-throughput methodologies to screen large numbers of microorganisms necessitate the use of small-scale culture vessels. In this context, an increasing number of researchers are turning to microtiter plate (MTP) formats to conduct experiments. MTPs are now widely used as a culturing vessel for phenotypic screening of aerobic laboratory cultures, and their suitability has been assessed for a range of applications. The work presented here extends these previous studies by assessing the metabolic footprint of MTP fermentation. A comparison of Chardonnay grape juice fermentation in MTPs with fermentations performed in air-locked (self-induced anaerobic) and cotton-plugged (aerobic) flasks was made. Maximum growth rates and biomass accumulation of yeast cultures grown in MTPs were indistinguishable from self-induced anaerobic flask cultures. Metabolic profiles measured differed depending on the metabolite. While glycerol and acetate accumulation mirrored that of self-induced anaerobic cultures, ethanol accumulation in MTP ferments was limited by the increased propensity of this volatile metabolite for evaporation in microlitre-scale culture format. The data illustrates that microplate cultures can be used as a replacement for self-induced anaerobic flasks in some instances and provide a useful and economical platform for the screening of industrial strains and culture media.


Assuntos
Indústria Alimentícia/métodos , Microbiologia Industrial/métodos , Vinho/microbiologia , Leveduras/crescimento & desenvolvimento , Leveduras/metabolismo , Etanol/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Extratos Vegetais/metabolismo , Vitis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...