Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 10(12)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33334074

RESUMO

Long-term clinical outcome of peritoneal dialysis (PD) depends on adequate removal of small solutes and water. The peritoneal endothelium represents the key barrier and peritoneal transport dysfunction is associated with vascular changes. Alanyl-glutamine (AlaGln) has been shown to counteract PD-induced deteriorations but the effect on vascular changes has not yet been elucidated. Using multiplexed proteomic and bioinformatic analyses we investigated the molecular mechanisms of vascular pathology in-vitro (primary human umbilical vein endothelial cells, HUVEC) and ex-vivo (arterioles of patients undergoing PD) following exposure to PD-fluid. An overlap of 1813 proteins (40%) of over 3100 proteins was identified in both sample types. PD-fluid treatment significantly altered 378 in endothelial cells and 192 in arterioles. The HUVEC proteome resembles the arteriolar proteome with expected sample specific differences of mainly immune system processes only present in arterioles and extracellular region proteins primarily found in HUVEC. AlaGln-addition to PD-fluid revealed 359 differentially abundant proteins and restored the molecular process landscape altered by PD fluid. This study provides evidence on validity and inherent limitations of studying endothelial pathomechanisms in-vitro compared to vascular ex-vivo findings. AlaGln could reduce PD-associated vasculopathy by reducing endothelial cellular damage, restoring perturbed abundances of pathologically important proteins and enriching protective processes.


Assuntos
Citoproteção , Soluções para Diálise/efeitos adversos , Dipeptídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana/patologia , Diálise Peritoneal , Arteríolas/efeitos dos fármacos , Criança , Citoproteção/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Modelos Biológicos , Proteômica
2.
Front Physiol ; 10: 472, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156443

RESUMO

Peritoneal dialysis (PD) fluids are cytotoxic to the peritoneum. Recent studies have shown that alanyl-glutamine (AlaGln) modulates the cellular stress response, improves mesothelial cell survival, reduces submesothelial thickening in experimental models of PD, and in clinical studies improves PD effluent cell stress and immune responses. However, the mechanisms of AlaGln-mediated membrane protection are not yet fully understood. Here, we explore those mechanisms through application of a novel proteomics approach in a clinically relevant in vivo model in rats. Experimental PD was performed for 5 weeks using conventional single-chamber bag (SCB) or neutral dual-chamber bag (DCB), PD fluid (PDF), with or without AlaGln supplementation, via a surgically implanted catheter. Rats subjected to a single dwell without catheter implantation served as controls. The peritoneal surface proteome was directly harvested by detergent extraction and subjected to proteomic analysis by two-dimensional difference gel electrophoresis (2D-DiGE) with protein identification by mass spectrometry. An integrated bioinformatic approach was applied to identify proteins significantly affected by the treatments despite biological variation and interfering high abundance proteins. From 505 of 744 common spots on 59 gels, 222 unique proteins were identified. Using UniProt database information, proteins were assigned either as high abundance plasma proteins, or as cellular proteins. Statistical analysis employed an adapted workflow from RNA-sequencing, the trimmed mean of M-values (TMM) for normalization, and a mixed model for computational identification of significantly differentially abundant proteins. The most prominently enriched pathways after 5 weeks chronic treatment with SCB or DCB, PDFs belonged to clusters reflecting tissue damage and cell differentiation by cytoskeletal reorganization, immune responses, altered metabolism, and oxidative stress and redox homeostasis. Although the AlaGln effect was not as prominent, associated enriched pathways showed mostly regression to control or patterns opposite that of the PDF effect. Our study describes the novel peritoneal surface proteome through combined proteomic and bioinformatic analyses, and assesses changes elicited by chronic experimental PD. The biological processes so identified promise to link molecular mechanisms of membrane damage and protection in the in vivo rat model to pathomechanisms and cytoprotective effects observed in vitro and in clinical PD.

3.
Mol Cell Proteomics ; 17(3): 516-532, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29208752

RESUMO

Peritoneal dialysis (PD) is a modality of renal replacement therapy in which the high volumes of available PD effluent (PDE) represents a rich source of biomarkers for monitoring disease and therapy. Although this information could help guide the management of PD patients, little is known about the potential of PDE to define pathomechanism-associated molecular signatures in PD.We therefore subjected PDE to a high-performance multiplex proteomic analysis after depletion of highly-abundant plasma proteins and enrichment of low-abundance proteins. A combination of label-free and isobaric labeling strategies was applied to PDE samples from PD patients (n = 20) treated in an open-label, randomized, two-period, cross-over clinical trial with standard PD fluid or with a novel PD fluid supplemented with alanyl-glutamine (AlaGln).With this workflow we identified 2506 unique proteins in the PDE proteome, greatly increasing coverage beyond the 171 previously-reported proteins. The proteins identified range from high abundance plasma proteins to low abundance cellular proteins, and are linked to larger numbers of biological processes and pathways, some of which are novel for PDE. Interestingly, proteins linked to membrane remodeling and fibrosis are overrepresented in PDE compared with plasma, whereas the proteins underrepresented in PDE suggest decreases in host defense, immune-competence and response to stress. Treatment with AlaGln-supplemented PD fluid is associated with reduced activity of membrane injury-associated mechanisms and with restoration of biological processes involved in stress responses and host defense.Our study represents the first application of the PDE proteome in a randomized controlled prospective clinical trial of PD. This novel proteomic workflow allowed detection of low abundance biomarkers to define pathomechanism-associated molecular signatures in PD and their alterations by a novel therapeutic intervention.


Assuntos
Dipeptídeos/farmacologia , Diálise Peritoneal , Proteoma , Proteínas Sanguíneas/metabolismo , Estudos Cross-Over , Feminino , Humanos , Masculino
4.
PLoS One ; 11(10): e0165045, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27768727

RESUMO

BACKGROUND: Peritonitis and ultrafiltration failure remain serious complications of chronic peritoneal dialysis (PD). Dysfunctional cellular stress responses aggravate peritoneal injury associated with PD fluid exposure, potentially due to peritoneal glutamine depletion. In this randomized cross-over phase I/II trial we investigated cytoprotective effects of alanyl-glutamine (AlaGln) addition to glucose-based PDF. METHODS: In a prospective randomized cross-over design, 20 stable PD outpatients underwent paired peritoneal equilibration tests 4 weeks apart, using conventional acidic, single chamber 3.86% glucose PD fluid, with and without 8 mM supplemental AlaGln. Heat-shock protein 72 expression was assessed in peritoneal effluent cells as surrogate parameter of cellular stress responses, complemented by metabolomics and functional immunocompetence assays. RESULTS: AlaGln restored peritoneal glutamine levels and increased the primary outcome heat-shock protein expression (effect 1.51-fold, CI 1.07-2.14; p = 0.022), without changes in peritoneal ultrafiltration, small solute transport, or biomarkers reflecting cell mass and inflammation. Further effects were glutamine-like metabolomic changes and increased ex-vivo LPS-stimulated cytokine release from healthy donor peripheral blood monocytes. In patients with a history of peritonitis (5 of 20), AlaGln supplementation decreased dialysate interleukin-8 levels. Supplemented PD fluid also attenuated inflammation and enhanced stimulated cytokine release in a mouse model of PD-associated peritonitis. CONCLUSION: We conclude that AlaGln-supplemented, glucose-based PD fluid can restore peritoneal cellular stress responses with attenuation of sterile inflammation, and may improve peritoneal host-defense in the setting of PD.


Assuntos
Soluções para Diálise , Dipeptídeos/farmacologia , Estresse Fisiológico , Idoso , Estudos Cross-Over , Dipeptídeos/farmacocinética , Eletroforese em Gel Bidimensional , Feminino , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
5.
Biomed Res Int ; 2015: 628158, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26495307

RESUMO

Recent research suggests that cytoprotective responses, such as expression of heat-shock proteins, might be inadequately induced in mesothelial cells by heat-sterilized peritoneal dialysis (PD) fluids. This study compares transcriptome data and multiple protein expression profiles for providing new insight into regulatory mechanisms. Two-dimensional difference gel electrophoresis (2D-DIGE) based proteomics and topic defined gene expression microarray-based transcriptomics techniques were used to evaluate stress responses in human omental peritoneal mesothelial cells in response to heat- or filter-sterilized PD fluids. Data from selected heat-shock proteins were validated by 2D western-blot analysis. Comparison of proteomics and transcriptomics data discriminated differentially regulated protein abundance into groups depending on correlating or noncorrelating transcripts. Inadequate abundance of several heat-shock proteins following exposure to heat-sterilized PD fluids is not reflected on the mRNA level indicating interference beyond transcriptional regulation. For the first time, this study describes evidence for posttranscriptional inadequacy of heat-shock protein expression by heat-sterilized PD fluids as a novel cytotoxic property. Cross-omics technologies introduce a novel way of understanding PDF bioincompatibility and searching for new interventions to reestablish adequate cytoprotective responses.


Assuntos
Soluções para Diálise/efeitos adversos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas de Choque Térmico/metabolismo , Diálise Peritoneal/efeitos adversos , Peritônio/metabolismo , Células Cultivadas , Soluções para Diálise/química , Soluções para Diálise/isolamento & purificação , Células Epiteliais/efeitos dos fármacos , Filtração , Perfilação da Expressão Gênica/métodos , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/efeitos dos fármacos , Temperatura Alta , Humanos , Peritônio/efeitos dos fármacos , Peritônio/patologia , Esterilização , Integração de Sistemas , Eletroforese em Gel Diferencial Bidimensional/métodos
7.
Electrophoresis ; 35(10): 1387-94, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24591105

RESUMO

Peritoneal dialysis effluent (PDE) represents a rich pool of potential biomarkers for monitoring disease and therapy. Until now, proteomic studies have been hindered by the plasma-like composition of the PDE. Beads covered with a peptide library are a promising approach to remove high abundant proteins and concentrate the sample in one step. In this study, a novel approach for proteomic biomarker identification in PDEs consisting of a depletion and concentration step followed by 2D gel based protein quantification was established. To prove this experimental concept a model system of artificial PDEs was established by spiking unused peritoneal dialysis (PD) fluids with cellular proteins reflecting control conditions or cell stress. Using this procedure, we were able to reduce the amount of high abundant plasma proteins and concentrate low abundant proteins while preserving changes in abundance of proteins with cellular origin. The alterations in abundance of the investigated marker for cell stress, the heat shock proteins, showed similar abundance profiles in the artificial PDE as in pure cell culture samples. Our results demonstrate the efficacy of this system in detecting subtle changes in cellular protein expression triggered by unphysiological stress stimuli typical in PD, which could serve as biomarkers. Further studies using patients' PDE will be necessary to prove the concept in clinical PD and to assess whether this technique is also informative regarding enriching low abundant plasma derived protein biomarker in the PDE.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Diálise Peritoneal , Proteínas/análise , Proteômica , Biomarcadores/análise , Western Blotting , Corantes Fluorescentes
8.
Nephrol Dial Transplant ; 27(3): 937-46, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21856758

RESUMO

BACKGROUND: Exposure of mesothelial cells to peritoneal dialysis fluids (PDF) results in cytoprotective cellular stress responses (CSR) that counteract PDF-induced damage. In this study, we tested the hypothesis that the CSR may be inadequate in relevant models of peritoneal dialysis (PD) due to insufficient levels of glutamine, resulting in increased vulnerability against PDF cytotoxicity. We particularly investigated the role of alanyl-glutamine (Ala-Gln) dipeptide on the cytoprotective PDF stress proteome. METHODS: Adequacy of CSR was investigated in two human in vitro models (immortalized cell line MeT-5A and mesothelial cells derived from peritoneal effluent of uraemic patients) following exposure to heat-sterilized glucose-based PDF (PD4-Dianeal, Baxter) diluted with medium and, in a comparative proteomics approach, at different levels of glutamine ranging from depletion (0 mM) via physiological (0.7 mM) to pharmacological levels (8 mM administered as Ala-Gln). RESULTS: Despite severe cellular injury, expression of cytoprotective proteins was dampened upon PDF exposure at physiological glutamine levels, indicating an inadequate CSR. Depletion of glutamine aggravated cell injury and further reduced the CSR, whereas addition of Ala-Gln at pharmacological level restored an adequate CSR, decreasing cellular damage in both PDF exposure systems. Ala-Gln specifically stimulated chaperoning activity, and cytoprotective processes were markedly enhanced in the PDF stress proteome. CONCLUSIONS: Taken together, this study demonstrates an inadequate CSR of mesothelial cells following PDF exposure associated with low and physiological levels of glutamine, indicating a new and potentially relevant pathomechanism. Supplementation of PDF with pharmacological doses of Ala-Gln restored the cytoprotective stress proteome, resulting in improved resistance of mesothelial cells to exposure to PDF. Future work will study the clinical relevance of CSR-mediated cytoprotection.


Assuntos
Soluções para Diálise/efeitos adversos , Dipeptídeos/farmacologia , Epitélio/efeitos dos fármacos , Diálise Peritoneal/efeitos adversos , Proteoma/análise , Proteoma/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Biomarcadores/metabolismo , Células Cultivadas , Criança , Pré-Escolar , Citoproteção/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Epitélio/metabolismo , Humanos , Lactente , Masculino , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
9.
Am J Pathol ; 178(4): 1544-55, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21435443

RESUMO

Bioincompatibility of peritoneal dialysis fluids (PDF) limits their use in renal replacement therapy. PDF exposure harms mesothelial cells but induces heat shock proteins (HSP), which are essential for repair and cytoprotection. We searched for cellular pathways that impair the heat shock response in mesothelial cells after PDF-exposure. In a dose-response experiment, increasing PDF-exposure times resulted in rapidly increasing mesothelial cell damage but decreasing HSP expression, confirming impaired heat shock response. Using proteomics and bioinformatics, simultaneously activated apoptosis-related and inflammation-related pathways were identified as candidate mechanisms. Testing the role of sterile inflammation, addition of necrotic cell material to mesothelial cells increased, whereas addition of the interleukin-1 receptor (IL-1R) antagonist anakinra to PDF decreased release of inflammatory cytokines. Addition of anakinra during PDF exposure resulted in cytoprotection and increased chaperone expression. Thus, activation of the IL-1R plays a pivotal role in impairment of the heat shock response of mesothelial cells to PDF. Danger signals from injured cells lead to an elevated level of cytokine release associated with sterile inflammation, which reduces expression of HSP and other cytoprotective chaperones and exacerbates PDF damage. Blocking the IL-1R pathway might be useful in limiting damage during peritoneal dialysis.


Assuntos
Epitélio/metabolismo , Proteínas de Choque Térmico/metabolismo , Interleucina-1/metabolismo , Materiais Biocompatíveis , Biologia Computacional/métodos , Citocinas/metabolismo , Eletroforese em Gel Bidimensional/métodos , Resposta ao Choque Térmico , Humanos , Inflamação , Espectrometria de Massas/métodos , Modelos Biológicos , Diálise Peritoneal , Proteômica/métodos , Receptores de Interleucina-1/metabolismo , Transdução de Sinais
10.
J Proteome Res ; 9(5): 2472-9, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20334435

RESUMO

Peritoneal dialysis is a frequently used mode of renal replacement therapy although peritoneal dialysis fluid (PDF) acts as stressor for mesothelial cells. In this study, stress response to PDF is investigated by a proteomics approach using Met-5A cell cultures closely resembling mesothelial cells. In a previous work, we identified about 100 proteins as significantly enhanced or diminished in abundance after full-PDF stress (90 mM glucose, pH 5.8, and presence of lactate and glucose degradation products (GDPs)) using two-dimensional electrophoresis (2-DE) and MALDI-MS and MS/MS techniques. In this paper, a functional analysis is presented assigning these proteins to glucose associated pathways according to the KEGG database. To establish the stressor role of high glucose concentration, the up/down regulation of proteins populating these pathways were investigated in a fluorescence-difference gel electrophoresis (DIGE) experiment exposing Met-5A cells to nonphysiologically high glucose conditions only. In this glucose-single stress experiment, the fold-change ratios of the investigated glucose-pathway associated proteins were found much lower than observed in the previous full-PDF stress experiments. This finding supports the hypothesis that cellular response to full-PDF stress is not primarily induced by the high glucose concentration, even when focusing on proteins belonging to the glucose associated pathways.


Assuntos
Soluções para Diálise , Glucose/farmacologia , Diálise Peritoneal/métodos , Proteoma/metabolismo , Proteômica/métodos , Linhagem Celular Transformada , Distribuição de Qui-Quadrado , Bases de Dados de Proteínas , Epitélio/metabolismo , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Proteoma/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Estresse Fisiológico/efeitos dos fármacos
11.
Curr Genet ; 52(5-6): 213-20, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17924109

RESUMO

Fusarium graminearum is a plant pathogen that causes severe economical losses by infecting numerous agriculturally important plants and until now most culture plants have only low levels of Fusarium resistance. The plant cell wall can be assumed as the first target that has to be overcome by plant pathogens. Therefore pathogenic organisms are known to produce a complex cocktail of plant cell wall lytic enzymes. Xylanases are besides cellulases the most prominent enzymes secreted by Fusarium during growth on plant cell walls. We identified a putative regulator of xylanase production with high similarity to the Aspergillus niger XlnR and the Trichoderma reesei Xyr1 proteins. Disruptant strains of F. graminearum were heavily impaired in xylose utilization and xylanase production on wheat cell walls. In contrast to other filamentous fungi the lack of this transcriptional activator had no effect on the induction of cellulases.


Assuntos
Celulase , Endo-1,4-beta-Xilanases/biossíntese , Proteínas Fúngicas/fisiologia , Fusarium/enzimologia , Celulase/biossíntese , Indução Enzimática/fisiologia , Proteínas Fúngicas/genética , Fusarium/genética , Genoma Fúngico , Organismos Geneticamente Modificados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...