Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofilm ; 7: 100200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38803605

RESUMO

Is it time to rethink the inoculum of animal models of implant-associated infections (IAI)? Traditionally, animal models of IAI are based on inoculation with metabolically active overnight cultures of planktonic bacteria or pre-grown surface-attached biofilms. However, such inoculums do not mimic the clinical initiation of IAI. Therefore, the present study aimed to develop a clinically relevant inoculum of low metabolic micro-aggregated bacteria. The porcine Staphylococcus aureus strain S54F9 was cultured in Tryptone Soya Broth (TSB) for seven days to facilitate the formation of low metabolic micro-aggregates. Subsequently, the aggregated culture underwent filtration using cell strainers of different pore sizes to separate micro-aggregates. Light microscopy was used to evaluate the aggregate formation and size in the different fractions, while isothermal microcalorimetry was used to disclose a low metabolic activity. The micro-aggregate fraction obtained with filter size 5-15 µm (actual measured mean size 32 µm) was used as inoculum in a porcine implant-associated osteomyelitis (IAO) model and compared to a standard overnight planktonic inoculum and a sham inoculum of 0.9 % saline. The micro-aggregate and planktonic inoculums caused IAO with the re-isolation of S. aureus from soft tissues, bones, and implants. However, compared to their planktonic counterpart, neither of the micro-aggregate inoculated animals showed signs of osteomyelitis, i.e., sequester, osteolysis, and pus at gross inspection. Furthermore, inoculation with low metabolic micro-aggregates resulted in a strong healing response with pronounced osteoid formation, comparable to sham animals. In conclusion, the formation and separation of low metabolic bacterial micro-aggregates into various size fractions is possible, however, planktonic bacteria were still seen in all size fractions. Inoculation with micro-aggregates caused a less-aggressive osteomyelitis i.e. combination of infected tissue and strong healing response. Therefore, the use of low metabolic micro-aggregates could be a relevant inoculum for animal models of less-aggressive and thereby slower developing IAI and add in to our understanding of the host-implant-bacteria interactions in slow-onset low-grade infections.

2.
APMIS ; 132(3): 210-220, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38270387

RESUMO

This study aimed to develop and validate "the Imprint method,", a technique for sampling microbes from chronic wounds while preserving their two-dimensional spatial organization. We used nylon filters to sample bacteria and compared with sampling using Eswabs in 12 patients. The Imprint method identified a mean of 0.93 unique species more than Eswab (4.3 ± 2.2 and 3.4 ± 1.4 unique species, respectively; mean ± SD; n = 30). Accuracy between the Eswab and the Imprint method was 93.2% and in cases of disagreement between methods, Imprint had a higher sensitivity in 6/8 of the most prevalent species. In vitro validation confirmed that the Imprint method could transfer bacterial colonies while replicating their two-dimensional organization and the area covered by bacteria on the plate sampled. Clinical testing demonstrated that the imprint method is a rapid and feasible technique that identified more unique bacterial species than Eswab with a good agreement between methods but that Imprint was better at detecting important pathogens such as Staphylococcus aureus and Pseudomonas aeruginosa. The Imprint method is a novel technique that cultures and records the two-dimensional organization of microbes, providing an alternative or supplement to conventional surface culture using Eswab.


Assuntos
Bactérias , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Manejo de Espécimes/métodos , Infecções Estafilocócicas/microbiologia , Pseudomonas aeruginosa
3.
JAMA Netw Open ; 6(12): e2348414, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113041

RESUMO

Importance: Antibiotic irrigation of breast implants is widely used internationally, but no clinical study has investigated the pharmacokinetics of antibiotic prophylaxis in the breast implant pocket. Objectives: To evaluate how long locally applied gentamicin, cefazolin, and vancomycin concentrations in the implant pocket remain above the minimum inhibitory concentration (MIC) for the most common bacterial infections and to measure systemic uptake. Design, Setting, and Participants: This prospective cohort study was performed at the Department of Plastic Surgery and Burns Treatment, Rigshospitalet, Copenhagen, Denmark, between October 25, 2021, and September 22, 2022, among 40 patients undergoing implant-based breast reconstruction who were part of the ongoing BREAST-AB trial (Prophylactic Treatment of Breast Implants With a Solution of Gentamicin, Vancomycin and Cefazolin Antibiotics for Women Undergoing Breast Reconstructive Surgery: a Randomized Controlled Trial). Patients were randomized to receive locally applied gentamicin, cefazolin, and vancomycin or placebo. Samples were obtained from the surgical breast drain and blood up to 10 days postoperatively. Exposures: The breast implant and the implant pocket were irrigated with 160 µg/mL of gentamicin, 2000 µg/mL of cefazolin, and 2000 µg/mL of vancomycin in a 200-mL saline solution. Main Outcomes and Measures: The primary outcome was the duration of antibiotic concentrations above the MIC breakpoint for Staphylococcus aureus according to the Clinical and Laboratory Standards Institute: gentamicin, 4 µg/mL; cefazolin, 2 µg/mL; and vancomycin, 2 µg/mL. Secondary outcomes included the time above the MIC for Pseudomonas aeruginosa and other relevant bacteria, as well as systemic uptake. Results: The study included 40 patients (median age, 44.6 years [IQR, 38.3-51.4 years]; median body mass index, 23.9 [IQR, 21.7-25.9]) with a median number of 3 drain samples (range, 1-10 drain samples) and 2 blood samples (range, 0-6 blood samples). Vancomycin and cefazolin remained above the MIC for S aureus significantly longer than gentamicin (gentamicin, 0.9 days [95% CI, 0.5-1.2 days] for blood samples vs 6.9 days [95% CI, 2.9 to 10.9 days] for vancomycin [P = .02] vs 3.7 days [95% CI, 2.2-5.2 days] for cefazolin [P = .002]). The gentamicin level remained above the MIC for P aeruginosa for 1.3 days (95% CI, 1.0-1.5 days). Only cefazolin was detectable in blood samples, albeit in very low concentrations (median concentration, 0.04 µg/mL [range, 0.007-0.1 µg/mL]). Conclusions and Relevance: This study suggests that patients treated with triple-antibiotic implant irrigation during breast reconstruction receive adequate prophylaxis for S aureus and other common implant-associated, gram-positive bacteria. However, the protection against P aeruginosa may be inadequate.


Assuntos
Cefazolina , Mamoplastia , Adulto , Feminino , Humanos , Antibacterianos , Antibioticoprofilaxia , Cefazolina/farmacocinética , Gentamicinas/farmacocinética , Estudos Prospectivos , Staphylococcus aureus , Vancomicina/farmacocinética , Pessoa de Meia-Idade
4.
FEMS Microbiol Rev ; 47(5)2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37656883

RESUMO

In vitro biofilms are communities of microbes with unique features compared to individual cells. Biofilms are commonly characterized by physical traits like size, adhesion, and a matrix made of extracellular substances. They display distinct phenotypic features, such as metabolic activity and antibiotic tolerance. However, the relative importance of these traits depends on the environment and bacterial species. Various mechanisms enable biofilm-associated bacteria to withstand antibiotics, including physical barriers, physiological adaptations, and changes in gene expression. Gene expression profiles in biofilms differ from individual cells but, there is little consensus among studies and so far, a 'biofilm signature transcriptome' has not been recognized. Additionally, the spatial and temporal variability within biofilms varies greatly depending on the system or environment. Despite all these variable conditions, which produce very diverse structures, they are all noted as biofilms. We discuss that clinical biofilms may differ from those grown in laboratories and found in the environment and discuss whether the characteristics that are commonly used to define and characterize biofilms have been shown in infectious biofilms. We emphasize that there is a need for a comprehensive understanding of the specific traits that are used to define bacteria in infections as clinical biofilms.


Assuntos
Adaptação Fisiológica , Antibacterianos , Farmacorresistência Bacteriana , Biofilmes , Fenótipo
5.
Commun Biol ; 6(1): 898, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658117

RESUMO

Biofilms have conventionally been perceived as dense bacterial masses on surfaces, following the five-step model of development. Initial biofilm research focused on surface-attached formations, but detached aggregates have received increasing attention in the past decade due to their pivotal role in chronic infections. Understanding their nature sparked fervent discussions in biofilm conferences and scientific literature. This review consolidates current insights on non-attached aggregates, offering examples of their occurrence in nature and diseases. We discuss their formation and dispersion mechanisms, resilience to antibiotics and immune-responses, drawing parallels to surface-attached biofilms. Moreover, we outline available in vitro models for studying non-attached aggregates.


Assuntos
Antibacterianos , Biofilmes , Antibacterianos/farmacologia , Peso Molecular
6.
APMIS ; 2023 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-37718461

RESUMO

Chronic wounds and chronic ulcers are an increasing problem associated with high health care burden and patient burden. The arrested healing of chronic wounds has, in part, been attributed to the presence of biofilms. Substantial research has documented the presence of biofilms in chronic wounds, and many mechanisms of host-pathogen interactions have been uncovered to explain the arrested healing. However, the paradigm of whether biofilms are only observed in chronic infections was recently challenged when biofilms were also observed in acute infections. Here, we characterize the distribution of bacteria in lower leg wounds with particular emphasis on Pseudomonas aeruginosa and Staphylococcus aureus by confocal laser scanning microscopy combined with PNA-FISH staining and routine culture of bacteria. We show that 40% of wounds contained either P. aeruginosa or S. aureus biofilms and demonstrate the presence of scattered single cells in tissues stained with a universal bacterial PNA-FISH probe. Thus, we demonstrate that chronic wounds do not only harbor bacteria organized in biofilms, but also carry populations of scattered single cells and small cell clusters of only a few bacteria. Our findings may influence diagnostic tools being developed to only target biofilms, where single-cell subpopulations thus may be overlooked and possibly lead to false-negative results.

7.
STAR Protoc ; 4(2): 102269, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37133990

RESUMO

Here, we present a protocol for assessing metabolic activity of bacterial populations by measuring heat flow using isothermal calorimetry. We outline the steps for preparing the different growth models of Pseudomonas aeruginosa and performing continuous metabolic activity measurements in the calScreener. We detail simple principal component analysis to differentiate between metabolic states of different populations and probabilistic logistic classification to assess resemblance to wild-type bacteria. This protocol for fine-scale metabolic measurement can aid in understanding microbial physiology. For complete details on the use and execution of this protocol, please refer to Lichtenberg et al. (2022).1.

8.
Wound Repair Regen ; 31(4): 500-515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37183189

RESUMO

A new in vitro chronic wound biofilm model was recently published, which provided a layered scaffold simulating mammalian tissue composition on which topical wound care products could be tested. In this paper, we updated the model even further to mimic the dynamic influx of nutrients from below as is the case in a chronic wound. The modified in vitro model was created using collagen instead of agar as the main matrix component and contained both Staphylococcus aureus and Pseudomonas aeruginosa. The model was cast in transwell inserts and then placed in wound simulating media, which allowed for an exchange of nutrients and waste products across a filter. Three potential wound care products and chlorhexidine digluconate 2% solution as a positive control were used to evaluate the model. The tested products were composed of hydrogels made from completely biodegradable starch microspheres carrying different active compounds. The compounds were applied topically and left for 2-4 days. Profiles of oxygen concentration and pH were measured to assess the effect of treatments on bacterial activity. Confocal microscope images were obtained of the models to visualise the existence of microcolonies. Results showed that the modified in vitro model maintained a stable number of the two bacterial species over 6 days. In untreated models, steep oxygen gradients developed and pH increased to >8.0. Hydrogels containing active compounds alleviated the high oxygen consumption and decreased pH drastically. Moreover, all three hydrogels reduced the colony forming units significantly and to a larger extent than the chlorhexidine control treatment. Overall, the modified model expressed several characteristics similar to in vivo chronic wounds.


Assuntos
Anti-Infecciosos , Infecção dos Ferimentos , Animais , Cicatrização , Infecção dos Ferimentos/microbiologia , Anti-Infecciosos/farmacologia , Colágeno/farmacologia , Bactérias , Biofilmes , Oxigênio , Hidrogéis/farmacologia , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Mamíferos
9.
Microbiology (Reading) ; 169(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748633

RESUMO

In the present study we evaluated the fitness, antimicrobial susceptibility, metabolic activity, gene expression, in vitro production of virulence factors and in vivo virulence of experimentally evolved Pseudomonas aeruginosa PAO1. These strains were previously evolved in the presence of tobramycin and the quorum sensing inhibitor furanone C-30 (C-30) and carried mutations in mexT and fusA1. Compared to the wild-type (WT), the evolved strains show a different growth rate and different metabolic activity, suggesting they have an altered fitness. mexT mutants were less susceptible to C-30 than WT strains; they also show reduced susceptibility to chloramphenicol and ciprofloxacin, two substrates of the MexEF-OprN efflux pump. fusA1 mutants had a decreased susceptibility to aminoglycoside antibiotics, and an increased susceptibility to chloramphenicol. The decreased antimicrobial susceptibility and decreased susceptibility to C-30 was accompanied by a changed metabolic activity profile during treatment. The expression of mexE was significantly increased in mexT mutants and induced by C-30, suggesting that MexEF-OprN exports C-30 out of the bacterial cell. The in vitro production of virulence factors as well as virulence in two in vivo models of the strains evolved in the presence of C-30 was unchanged compared to the virulence of the WT. Finally, the evolved strains were less susceptible towards tobramycin (alone and combined with C-30) in an in vivo mouse model. In conclusion, this study shows that mutations acquired during experimental evolution of P. aeruginosa biofilms in the presence of tobramycin and C-30, are accompanied by an altered fitness, metabolism, mexE expression and in vitro and in vivo antimicrobial susceptibility.


Assuntos
Pseudomonas aeruginosa , Tobramicina , Animais , Camundongos , Pseudomonas aeruginosa/metabolismo , Tobramicina/farmacologia , Tobramicina/metabolismo , Percepção de Quorum/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Cloranfenicol , Biofilmes , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
10.
Microbiol Spectr ; 10(6): e0313122, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36354337

RESUMO

In infections, bacterial cells are often found as relatively small multicellular aggregates characterized by a heterogeneous distribution of phenotype, genotype, and growth rates depending on their surrounding microenvironment. Many laboratory models fail to mimic these characteristics, and experiments are often initiated from planktonic bacteria given optimal conditions for rapid growth without concerns about the microenvironmental characteristics during biofilm maturation. Therefore, we investigated how the initial bacterial concentration (henceforth termed the inoculum) influences the microenvironment during initial growth and how this affects the sizes and distribution of developed aggregates in an embedded biofilm model-the alginate bead biofilm model. Following 24 h of incubation, the viable biomass was independent of starting inoculum but with a radically different microenvironment which led to differences in metabolic activity depending on the inoculum. The inoculum also affected the number of cells surviving treatment with the antibiotic tobramycin, where the highest inoculum showed higher survival rates than the lowest inoculum. The change in antibiotic tolerance was correlated with cell-specific RNA content and O2 consumption rates, suggesting a direct role of metabolic activity. Thus, the starting number of bacteria results in different phenotypic trajectories governed by different microenvironmental characteristics, and we demonstrate some of the possible implications of such physiological gradients on the outcome of in vitro experiments. IMPORTANCE Biofilm aggregates grown in the alginate bead biofilm model bear resemblance to features of in vivo biofilms. Here, we show that changing the initial concentration of bacteria in the biofilm model leads to widely different behavior of the bacteria following an incubation period. This difference is influenced by the local conditions experienced by the bacteria during growth, which impact their response to antibiotic treatment. Our study provides a framework for manipulating aggregate sizes in in vitro biofilm models. It underlines the importance of how experiments are initiated, which can profoundly impact the outcomes and interpretation of microbiological experiments.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Biofilmes , Fenótipo , Alginatos/metabolismo , Infecções por Pseudomonas/microbiologia
11.
Cell Rep ; 41(3): 111515, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36260996

RESUMO

Bacteria in biofilms are embedded in extracellular matrix and display low metabolic activity, partly due to insufficient diffusive exchange of metabolic substrate. The extracellular matrix and low metabolic activity both contribute to the high antibiotic tolerance-the hallmark of biofilm bacteria. The second messenger molecule, c-di-GMP, regulates biofilm development in Pseudomonas aeruginosa, where high internal levels lead to biofilm formation and low levels are associated with planktonic bacteria. Using a microcalorimetric approach, we show that c-di-GMP signaling is a major determinant of the metabolic activity of P. aeruginosa, both in planktonic culture and in two biofilm models. The high c-di-GMP content of biofilm bacteria forces them to rapidly spend a large amount of energy on the production of exopolysaccharides, resulting in a subsequent low metabolic state. This suggests that the low metabolic state of bacteria in mature biofilms, to some extent, is a consequence of a c-di-GMP-regulated survival strategy.


Assuntos
Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , GMP Cíclico/metabolismo , Biofilmes , Antibacterianos/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo
12.
FEMS Microbiol Rev ; 46(5)2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35472245

RESUMO

Pseudomonas aeruginosa is a human pathogen associated with both acute and chronic infections. While intensively studied, the basic mechanisms enabling the long-term survival of P. aeruginosa in the host, despite massive immune system attack and heavy antimicrobial treatment, remain to be identified. We argue that such infections may represent niche invasions by P. aeruginosa that influence the microenvironment by depleting host-derived substrate and activating the immune response. Bacteria embedded in cell aggregates establish a microenvironmental niche, where they endure the initial host response by slowing down their metabolism. This provides stable, lasting growth conditions with a constant, albeit slow supply of substrate and electron acceptors. Under such stable conditions, P. aeruginosa exhibits distinct adaptive traits, where its gene expression pattern reflects a life exposed to continuous attack by the host immune system and antimicrobials. Here, we review fundamental microenvironmental aspects of chronic P. aeruginosa infections and examine how their structural organization influences their in vivo microenvironment, which in turn affects the interaction of P. aeruginosa biofilm aggregates with the host immune system. We discuss how improving our knowledge about the microenvironmental ecology of P. aeruginosa in chronic infections can be used to combat persistent, hard-to-treat bacterial infections.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Biofilmes , Humanos , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Percepção de Quorum , Relação Estrutura-Atividade
13.
Microorganisms ; 10(4)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35456825

RESUMO

Bacterial biofilms residing in chronic wounds are thought to have numerous survival strategies, making them extremely difficult to eradicate and resulting in long-term infections. However, much of our knowledge regarding biofilm persistence stems from in vitro models and experiments performed in vivo in animal models. While the knowledge obtained from such experiments is highly valuable, its direct translation to the human clinical setting should be undertaken with caution. In this review, we highlight knowledge obtained from human clinical samples in different aspects of biofilm survival strategies. These strategies have been divided into segments of the following attributes: altered transcriptomic profiles, spatial distribution, the production of extracellular polymeric substances, an altered microenvironment, inter-and intra-species interactions, and heterogeneity in the bacterial population. While all these attributes are speculated to contribute to the enhanced persistence of biofilms in chronic wounds, only some of them have been demonstrated to exist in human wounds. Some of the attributes have been observed in other clinical diseases while others have only been observed in vitro. Here, we have strived to clarify the limitations of the current knowledge in regard to this specific topic, without ignoring important in vitro and in vivo observations.

14.
iScience ; 24(12): 103404, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34849468

RESUMO

Denitrification supports anoxic growth of Pseudomonas aeruginosa in infections. Moreover, denitrification may provide oxygen (O2) resulting from dismutation of the denitrification intermediate nitric oxide (NO) as seen in Methylomirabilis oxyfera. To examine the prevalence of NO dismutation we studied O2 release by P. aeruginosa in airtight vials. P. aeruginosa rapidly depleted O2 but NO supplementation generated peaks of O2 at the onset of anoxia, and we demonstrate a direct role of NO in the O2 release. However, we were not able to detect genetic evidence for putative NO dismutases. The supply of endogenous O2 at the onset of anoxia could play an adaptive role when P. aeruginosa enters anaerobiosis. Furthermore, O2 generation by NO dismutation may be more widespread than indicated by the reports on the distribution of homologues genes. In general, NO dismutation may allow removal of nitrate by denitrification without release of the very potent greenhouse gas, nitrous oxide.

15.
Antibiotics (Basel) ; 10(5)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33946290

RESUMO

Daptomycin is recommended for the treatment of Staphylococcus aureus infections due to its bactericidal activity. However, its mechanism of action is poorly understood. The involvement of reactive oxygen species (ROS) in the bactericidal activity of daptomycin has been proved against planktonic S. aureus, but not against the biofilm of S. aureus. Therefore, we evaluated if ROS contributes to the effect of daptomycin against biofilm of S. aureus. Biofilms of wild type, catalase deficient and daptomycin-resistant S. aureus strains were grown in microtiter-plates. After three days, the biofilms were exposed to daptomycin with or without thiourea in the presence of a ROS indicator. After overnight incubation, the amount of ROS and the percentage of surviving bacteria were determined. The bacterial survival was higher and the amount of ROS was lower in the wild type than in the catalase deficient biofilm, demonstrating a protective effect of catalase against daptomycin. The induction of cytotoxic ROS formation by daptomycin was verified by the addition of thiourea, which reduced the amount of ROS and protected the wild type biofilm against high concentrations of daptomycin. Accordingly, only the highest concentration of daptomycin reduced the bacterial survival and increased the ROS formation in the resistant biofilm. In conclusion, daptomycin induced the production of cytotoxic levels of endogenous ROS in S. aureus biofilm and the presence of catalase protected the biofilm against the lethality of the induced ROS.

16.
Microorganisms ; 9(3)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801086

RESUMO

Chloroflexus aggregans is a metabolically versatile, thermophilic, anoxygenic phototrophic member of the phylum Chloroflexota (formerly Chloroflexi), which can grow photoheterotrophically, photoautotrophically, chemoheterotrophically, and chemoautotrophically. In hot spring-associated microbial mats, C. aggregans co-exists with oxygenic cyanobacteria under dynamic micro-environmental conditions. To elucidate the predominant growth modes of C. aggregans, relative transcription levels of energy metabolism- and CO2 fixation-related genes were studied in Nakabusa Hot Springs microbial mats over a diel cycle and correlated with microscale in situ measurements of O2 and light. Metatranscriptomic analyses indicated two periods with different modes of energy metabolism of C. aggregans: (1) phototrophy around midday and (2) chemotrophy in the early morning hours. During midday, C. aggregans mainly employed photoheterotrophy when the microbial mats were hyperoxic (400-800 µmol L-1 O2). In the early morning hours, relative transcription peaks of genes encoding uptake hydrogenase, key enzymes for carbon fixation, respiratory complexes as well as enzymes for TCA cycle and acetate uptake suggest an aerobic chemomixotrophic lifestyle. This is the first in situ study of the versatile energy metabolism of C. aggregans based on gene transcription patterns. The results provide novel insights into the metabolic flexibility of these filamentous anoxygenic phototrophs that thrive under dynamic environmental conditions.

17.
J Oral Microbiol ; 12(1): 1832832, 2020 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-33178403

RESUMO

Background: Intake of probiotic bacteria may prevent oral Candida infection. Objective: To screen the antifungal activity of 14 Lactobacillus candidate strains of human origin, against six opportunistic C. albicans and non-albicans species. A second aim was to study the acid production of the four strains showing the strongest antifungal activity. Methods: We used an agar overlay growth inhibition assay to the assess the antifungal activity of the lactobacilli. The acid-producing capacity was measured with pH micro-sensors. Results: All 14 Lactobacillus candidates inhibited the growth of the Candida spp. The four best-performing strains were L. rhamnosus DSM 32992 (oral origin), L. rhamnosus DSM 32991 (oral), L. jensenii 22B42 (vaginal), and L. rhamnosus PB01 (vaginal). The difference between L. rhamnosus DSM 32992 and the other three strains was statistically significant (p < 0.001). The Candida spp. differed in susceptibility; C. parapsilosis was highly inhibited, while C. krusei was not or slightly inhibited. The oral L. rhamnosus DSM 32992 and DSM 32991 strains showed the lowest pH-values. Conclusion: Screening of probiotic lactobacilli showed significant strain-dependent variations in their antifungal capacity in a pH-dependent mode. Two strains of oral origin were most effective. A further characterization seems justified to elaborate on their probiotic properties.

18.
Artigo em Inglês | MEDLINE | ID: mdl-32850494

RESUMO

Chronic infections present a serious economic burden to health-care systems. The severity and prevalence of chronic infections are continuously increasing due to an aging population and an elevated number of lifestyle related diseases such as diabetes. Treatment of chronic infections has proven difficult, mainly due to the presence of biofilms that render bacteria more tolerant toward antimicrobials and the host immune response. Chronic infections have been described to harbor several different bacterial species and it has been hypothesized that microscale interactions and mixed-species consortia are present as described for most natural occurring biofilms i.e., aquatic systems and industrial settings, but also for some commensal human biofilms i.e., the mouth microbiota. However, the presence of mixed-species biofilms in chronic infections is most often an assumption based on culture-based methods and/or by means of molecular approaches, such as PCR and sequencing performed from homogenized bulk tissue samples. These methods disregard the spatial organization of the bacterial community and thus valuable information on biofilm aggregate composition, spatial organization, and possible interactions between different species is lost. Hitherto, only few studies have made visual in situ presentations of mixed-species biofilms in chronic infections, which is pivotal for the description of bacterial composition, spatial distribution, and interspecies interaction on the microscale. In order for bacteria to interact (synergism, commensalism, mutualism, competition, etc.) they need to be in close proximity to each other on the scale where they can affect e.g., solute concentrations. We argue that visual proof of mixed species biofilms in chronic infections is scarce compared to what is seen in e.g., environmental biofilms and call for a debate on the importance of mixed-species biofilm in chronic infections.


Assuntos
Anti-Infecciosos , Biofilmes , Idoso , Bactérias/genética , Humanos
19.
Microbes Environ ; 34(4): 374-387, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31685759

RESUMO

Phototrophic microbial mats are assemblages of vertically layered microbial populations dominated by photosynthetic microorganisms. In order to elucidate the vertical distribution and diversity of phototrophic microorganisms in a hot spring-associated microbial mat in Nakabusa (Japan), we analyzed the 16S rRNA gene amplicon sequences of the microbial mat separated into five depth horizons, and correlated them with microsensor measurements of O2 and spectral scalar irradiance. A stable core community and high diversity of phototrophic organisms dominated by the filamentous anoxygenic phototrophs, Roseiflexus castenholzii and Chloroflexus aggregans were identified together with the spectral signatures of bacteriochlorophylls (BChls) a and c absorption in all mat layers. In the upper mat layers, a high abundance of cyanobacteria (Thermosynechococcus sp.) correlated with strong spectral signatures of chlorophyll a and phycobiliprotein absorption near the surface in a zone of high O2 concentrations during the day. Deeper mat layers were dominated by uncultured chemotrophic Chlorobi such as the novel putatively sulfate-reducing "Ca. Thermonerobacter sp.", which showed increasing abundance with depth correlating with low O2 in these layers enabling anaerobic metabolism. Oxygen tolerance and requirements for the novel phototroph "Ca. Chloroanaerofilum sp." and the uncultured chemotrophic Armatimonadetes member type OS-L detected in Nakabusa hot springs, Japan appeared to differ from previously suggested lifestyles for close relatives identified in hot springs in Yellowstone National Park, USA. The present study identified various microenvironmental gradients and niche differentiation enabling the co-existence of diverse chlorophototrophs in metabolically diverse communities in hot springs.


Assuntos
Bactérias/classificação , Biodiversidade , Fontes Termais/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Bacterioclorofilas/metabolismo , DNA Bacteriano/genética , Fontes Termais/química , Japão , Luz , Microbiota/genética , Oxigênio/análise , Oxigênio/metabolismo , Fotossíntese , Processos Fototróficos , Ficobiliproteínas/metabolismo , Filogenia , RNA Ribossômico 16S/genética
20.
Glob Chall ; 3(11): 1900044, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31692989

RESUMO

The antibacterial efficacy of a copper-silver alloy coating under conditions resembling build up of dry surface bacterial biofilms is successfully demonstrated according to US EPA test methods with a ≥99.9% reduction of test organisms over a 24 h period. A tailor-made confocal imaging protocol is designed to visualize in situ the killing of bacterial biofilms at the copper-silver alloy surface and monitor the kinetics for 100 min. The copper-silver alloy coating eradicates a biofilm of Gram-positive bacteria within 5 min while a biofilm of Gram-negative bacteria are killed more slowly. In situ pH monitoring indicates a 2-log units increase at the interface between the metallic surface and bacterial biofilm; however, the viability of the bacteria is not directly affected by this raise (pH 8.0-9.5) when tested in buffer. The OH- production, as a result of the interaction between the electrochemically active surface and the bacterial biofilm under environmental conditions, is thus one aspect of the contact-mediated killing of the copper-silver alloy coating and not the direct cause of the observed antibacterial efficacy. The combination of oxidation of bacterial cells, release of copper ions, and local pH raise characterizes the antibacterial activity of the copper-silver alloy-coated dry surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...