Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Vis Comput Graph ; 30(1): 1041-1051, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37871078

RESUMO

Line attributes such as width and dashing are commonly used to encode information. However, many questions on the perception of line attributes remain, such as how many levels of attribute variation can be distinguished or which line attributes are the preferred choices for which tasks. We conducted three studies to develop guidelines for using stylized lines to encode scalar data. In our first study, participants drew stylized lines to encode uncertainty information. Uncertainty is usually visualized alongside other data. Therefore, alternative visual channels are important for the visualization of uncertainty. Additionally, uncertainty-e.g., in weather forecasts-is a familiar topic to most people. Thus, we picked it for our visualization scenarios in study 1. We used the results of our study to determine the most common line attributes for drawing uncertainty: Dashing, luminance, wave amplitude, and width. While those line attributes were especially common for drawing uncertainty, they are also commonly used in other areas. In studies 2 and 3, we investigated the discriminability of the line attributes determined in study 1. Studies 2 and 3 did not require specific application areas; thus, their results apply to visualizing any scalar data in line attributes. We evaluated the just-noticeable differences (JND) and derived recommendations for perceptually distinct line levels. We found that participants could discriminate considerably more levels for the line attribute width than for wave amplitude, dashing, or luminance.

2.
Int J Comput Assist Radiol Surg ; 15(4): 617-627, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31955326

RESUMO

PURPOSE: Intensive planning and analysis from echocardiography are a crucial step before reconstructive surgeries are applied to malfunctioning mitral valves. Volume visualizations of echocardiographic data are often used in clinical routine. However, they lack a clear visualization of the crucial factors for decision making. METHODS: We build upon patient-specific mitral valve surface models segmented from echocardiography that represent the valve's geometry, but suffer from self-occlusions due to complex 3D shape. We transfer these to 2D maps by unfolding their geometry, resulting in a novel 2D representation that maintains anatomical resemblance to the 3D geometry. It can be visualized together with color mappings and presented to physicians to diagnose the pathology in one gaze without the need for further scene interaction. Furthermore, it facilitates the computation of a Pathology Score, which can be used for diagnosis support. RESULTS: Quality and effectiveness of the proposed methods were evaluated through a user survey conducted with domain experts. We assessed pathology detection accuracy using 3D valve models in comparison with the novel visualizations. Classification accuracy increased by 5.3% across all tested valves and by 10.0% for prolapsed valves. Further, the participants' understanding of the relation between 3D and 2D views was evaluated. The Pathology Score is found to have potential to support discriminating pathologic valves from normal valves. CONCLUSIONS: In summary, our survey shows that pathology detection can be improved in comparison with simple 3D surface visualizations of the mitral valve. The correspondence between the 2D and 3D representations is comprehensible, and color-coded pathophysiological magnitudes further support the clinical assessment.


Assuntos
Ecocardiografia Tridimensional/métodos , Insuficiência da Valva Mitral/diagnóstico por imagem , Valva Mitral/diagnóstico por imagem , Ecocardiografia/métodos , Feminino , Humanos , Masculino , Valva Mitral/cirurgia , Insuficiência da Valva Mitral/cirurgia , Reprodutibilidade dos Testes
3.
IEEE Trans Vis Comput Graph ; 26(1): 971-980, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31425104

RESUMO

The mitral valve, one of the four valves in the human heart, controls the bloodflow between the left atrium and ventricle and may suffer from various pathologies. Malfunctioning valves can be treated by reconstructive surgeries, which have to be carefully planned and evaluated. While current research focuses on the modeling and segmentation of the valve, we base our work on existing segmentations of patient-specific mitral valves, that are also time-resolved ( 3D+t) over the cardiac cycle. The interpretation of the data can be ambiguous, due to the complex surface of the valve and multiple time steps. We therefore propose a software prototype to analyze such 3D+t data, by extracting pathophysiological parameters and presenting them via dimensionally reduced visualizations. For this, we rely on an existing algorithm to unroll the convoluted valve surface towards a flattened 2D representation. In this paper, we show that the 3D+t data can be transferred to 3D or 2D representations in a way that allows the domain expert to faithfully grasp important aspects of the cardiac cycle. In this course, we not only consider common pathophysiological parameters, but also introduce new observations that are derived from landmarks within the segmentation model. Our analysis techniques were developed in collaboration with domain experts and a survey showed that the insights have the potential to support mitral valve diagnosis and the comparison of the pre- and post-operative condition of a patient.

4.
Adv Exp Med Biol ; 1138: 103-113, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31313261

RESUMO

This chapter discusses the concept of Auxiliary Tools in depth perception. Four recent techniques are considered, that apply the concept in the domain of liver vasculature visualization. While an improvement is evident, the evaluations and conducted studies are found to be biased and not general enough to provide a convincing assessment. The chapter provides background information about human visual perception and a brief history on vascular visualization. Then four state-of-the-art methods are discussed. Finally, a comparative discussion points out objectives for future follow-up work.


Assuntos
Percepção de Profundidade , Diagnóstico por Imagem/métodos , Fígado/irrigação sanguínea , Fígado/diagnóstico por imagem , Percepção Visual , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA