Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(11): e0274531, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36383520

RESUMO

Chronic wasting disease (CWD) is a fatal prion disease affecting cervids (deer, elk, moose). Current methods to monitor individual disease state include highly invasive antemortem rectal biopsy or postmortem brain biopsy. Efficient, sensitive, and selective antemortem and postmortem testing of populations would increase knowledge of the dynamics of CWD epizootics as well as provide a means to track CWD progression into previously unaffected areas. Here, we analyzed the presence of CWD prions in skin samples from two easily accessed locations (ear and belly) from 30 deceased white-tailed deer (Odocoileus viginianus). The skin samples were enzymatically digested and analyzed by real-time quaking-induced conversion (RT-QuIC). The diagnostic sensitivity of the ear and belly skin samples were both 95%, and the diagnostic specificity of the ear and belly skin were both 100%. Additionally, the location of the skin biopsy on the ear does not affect specificity or sensitivity. These results demonstrate the efficacy of CWD diagnosis with skin biopsies using RT-QuIC. This method could be useful for large scale antemortem population testing.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Doença de Emaciação Crônica/diagnóstico , Doença de Emaciação Crônica/patologia , Biópsia
2.
J Agric Food Chem ; 68(30): 7926-7934, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610013

RESUMO

RNA interference is a promising crop protection technology that has seen rapid development in the past several years. Here, we investigated polyamino acid biopolymers, inorganic nanomaterials, and hybrid organic-inorganic nanomaterials for delivery of dsRNA and efficacy of gene knockdown using the model nematode Caenorhabditis elegans. Using an oral route of delivery, we are able to approximate how nanomaterials will be delivered in the environment. Of the materials investigated, only Mg-Al layered double-hydroxide nanoparticles were effective at gene knockdown in C. elegans, reducing marker gene expression to 66.8% of that of the control at the lowest tested concentration. In addition, we identified previously unreported injuries to the mouthparts of C. elegans associated with the use of a common cell-penetrating peptide, poly-l-arginine. Our results will allow the pursuit of further research into promising materials for dsRNA delivery and also allow for the exclusion of those with little efficacy or deleterious effects.


Assuntos
Caenorhabditis elegans/genética , Técnicas de Silenciamento de Genes/métodos , Nanoestruturas/química , RNA de Cadeia Dupla/genética , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Técnicas de Silenciamento de Genes/instrumentação , Interferência de RNA , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo
3.
Environ Sci Technol ; 53(7): 3832-3840, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30869506

RESUMO

In this study, we investigated chitosan/dsRNA polyplex nanoparticles as RNAi agents in the nematode Caenorhabditis elegans. By measurement of an easily observed phenotype and uptake of fluorescently labeled dsRNA, we demonstrate that chitosan/dsRNA polyplex nanoparticles are considerably more effective at gene knockdown on a whole body concentration basis than naked dsRNA. Further, we show that chitosan/dsRNA polyplex nanoparticles introduce dsRNA into cells via a different mechanism than the canonical sid-1 and sid-2 pathway. Clathrin-mediated endocytosis is likely the main uptake mechanism. Finally, although largely reported as nontoxic, we have found that chitosan, as either polyplex nanoparticles or alone, is capable of downregulating the expression of myosin. Myosin is a critical component of growth and development in eukaryotes, and we have observed reductions in both growth rate and reproduction in chitosan exposed C. elegans. Given the increased potency, noncanonical uptake, and off-target effects that we identified, these findings highlight the need for a rigorous safety assessment of nano-RNAi products prior to deployment. Specifically, the potential adverse effects of the nanocarrier and its components need to be considered.


Assuntos
Proteínas de Caenorhabditis elegans , Quitosana , Nanopartículas , Animais , Caenorhabditis elegans , Proteínas de Membrana , RNA de Cadeia Dupla
4.
Environ Pollut ; 213: 314-321, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26925754

RESUMO

Manufactured nanoparticles (MNP) rapidly undergo aging processes once released from products. Silver sulfide (Ag2S) is the major transformation product formed during the wastewater treatment process for Ag-MNP. We examined toxicogenomic responses of pristine Ag-MNP, sulfidized Ag-MNP (sAg-MNP), and AgNO3 to a model soil organism, Caenorhabditis elegans. Transcriptomic profiling of nematodes which were exposed at the EC30 for reproduction for AgNO3, Ag-MNP, and sAg-MNP resulted in 571 differentially expressed genes. We independently verified expression of 4 genes (numr-1, rol-8, col-158, and grl-20) using qRT-PCR. Only 11% of differentially expressed genes were common among the three treatments. Gene ontology enrichment analysis also revealed that Ag-MNP and sAg-MNP had distinct toxicity mechanisms and did not share any of the biological processes. The processes most affected by Ag-MNP relate to metabolism, while those processes most affected by sAg-MNP relate to molting and the cuticle, and the most impacted processes for AgNO3 exposed nematodes was stress related. Additionally, as observed from qRT-PCR and mutant experiments, the responses to sAg-MNP were distinct from AgNO3 while some of the effects of pristine MNP were similar to AgNO3, suggesting that effects from Ag-MNP is partially due to dissolved silver ions.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Compostos de Prata/toxicidade , Nitrato de Prata/toxicidade , Prata/toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Caenorhabditis elegans/metabolismo , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...