Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Inflammopharmacology ; 32(1): 903-908, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064111

RESUMO

This review will discuss evidence that aspirin possesses anticancer activity. Long-term observational retrospective studies on nurses and health professionals demonstrated that regular aspirin users had a significantly lower incidence of colorectal cancer (RCT). Prospective studies on patients with a high risk of developing colorectal polyps/cancer confirmed that aspirin use significantly lowered colorectal dysplasia. Numerous observational studies focused on the use of aspirin in a broad range of cancers demonstrating a consistent 20-30% preventive effect on cancer incidence and mortality. Random Controlled Trials provided conflicting results on the benefit of aspirin in preventing CRC. Based on the age, weight/body size of the subjects for reasons still being explored. Studies on rats/mice further demonstrated that treatment of animals with aspirin where colon cancer was induced chemically or genetically (APCMin mice) reduced colonic dysplasia and polyp formation. Aspirin treatment was also effective at reducing the growth of cancer cells transplanted into normal/immunocompromised mice, suggesting that aspirin may be effective in treating different cancers. This possibility is also supported in clinical studies that aspirin use pre- and postcancer diagnosis significantly reduced the metastatic spread of cancer and increased patient survival. Lastly, the importance of the antiplatelet actions of aspirin in the drug's anticancer activity and specifically cancer metastatic spread is discussed and the current controversy related to the conflicting recommendations of the USPSTF over the past five years on the use of aspirin to prevent CRC.


Assuntos
Aspirina , Neoplasias Colorretais , Humanos , Camundongos , Ratos , Animais , Aspirina/farmacologia , Aspirina/uso terapêutico , Anti-Inflamatórios não Esteroides/efeitos adversos , Estudos Retrospectivos , Estudos Prospectivos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/prevenção & controle
3.
Drug Discov Today ; 28(1): 103411, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36270473

RESUMO

We describe strategies in drug development to reduce the gastrointestinal (GI) toxicity of nonsteroidal anti-inflammatory drugs (NSAIDs). We then provide an overview of the experiments that led to the development of PC-NSAIDs, a novel family of NSAIDs associated with phosphatidylcholine (PC) that have reduced GI toxicity and full therapeutic activity. Furthermore, we describe the evidence showing: that the stomach possesses hydrophobic properties that are attributable to phospholipids lining the mucus gel layer; and that NSAIDs chemically associate with intrinsic PC, thereby attenuating the tissue's hydrophobic properties. Further, pre-associating NSAIDs with PC reduces the GI toxicity of these drugs, both in rodent ulcer models and in human subjects, without affecting the drugs' therapeutic activity. Finally, we discuss the commercialization and launch of Aspirin-PC, an over-the-counter (OTC) drug with the brand name Vazalore®.


Assuntos
Anti-Inflamatórios não Esteroides , Gastroenteropatias , Humanos , Aspirina , Fosfatidilcolinas/química
4.
Inflammopharmacology ; 30(4): 1475-1476, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35729443

RESUMO

In this commentary, we make a case that the mechanism of COVID pathogenesis is related to virus-induced endothelial injury resulting in platelet activation and the formation of microthrombi both systemically and in cardiac and pulmnonary circulation which result in major causes of COVID morbidity and mortality. Aspirin by virtue of its irreversible inhibition of platelet COX-1, should reverse these platelet-induced pathogenic changes associated with COVID infection for the 6-9 day lifetime of the platelet. We also cite recent findings of a retrospective analysis that supports the use of low-dose (81 mg) aspirin to treat the symptoms associated with the early stages of COVID infection.


Assuntos
Aspirina , Tratamento Farmacológico da COVID-19 , Aspirina/farmacologia , Aspirina/uso terapêutico , Plaquetas , Humanos , Ativação Plaquetária , Estudos Retrospectivos
5.
Cancer Res ; 81(5): 1209-1211, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33355186

RESUMO

Patients with cancer are more susceptible to be infected by SARS-CoV-2 and develop severe outcomes including ICU admittance, mechanical ventilator support, and a high rate of mortality. Like mid-to late-stage cancer, SARS-CoV-2 infection is associated with platelet hyperactivity, systemic inflammation, thrombotic complications, and coagulopathy. Platelets also promote cancer cell growth, survival in circulation, and angiogenesis at sites of metastases. In this article, we will discuss the potential for platelets in the development of systemic inflammation and thrombosis in SARS-CoV-2-infected patients with cancer, with the concern that the platelet-induced pathogenic events are likely magnified in cancer patients with COVID-19.


Assuntos
COVID-19/fisiopatologia , Neoplasias/fisiopatologia , Ativação Plaquetária/fisiologia , SARS-CoV-2/isolamento & purificação , Plaquetas/fisiologia , COVID-19/diagnóstico , COVID-19/virologia , Humanos , Inflamação/fisiopatologia , Neoplasias/diagnóstico , Medição de Risco/métodos , Medição de Risco/estatística & dados numéricos , Fatores de Risco , SARS-CoV-2/fisiologia , Trombose/fisiopatologia
6.
BMC Cancer ; 20(1): 871, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912193

RESUMO

BACKGROUND: Non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin and sulindac are effective for colorectal cancer prevention in humans and some animal models, but concerns over gastro-intestinal (GI) ulceration and bleeding limit their potential for chemopreventive use in broader populations. Recently, the combination of aspirin with a phospholipid, packaged as PL-ASA, was shown to reduce GI toxicity in a small clinical trial. However, these studies were done for relatively short periods of time. Since prolonged, regular use is needed for chemopreventive benefit, it is important to know whether GI safety is maintained over longer use periods and whether cancer prevention efficacy is preserved when an NSAID is combined with a phospholipid. METHODS: As a first step to answering these questions, we treated seven to eight-week-old, male and female C57B/6 Apcmin/+ mice with the NSAID sulindac, with and without phosphatidylcholine (PC) for 3-weeks. At the end of the treatment period, we evaluated polyp burden, gastric toxicity, urinary prostaglandins (as a marker of sulindac target engagement), and blood chemistries. RESULTS: Both sulindac and sulindac-PC treatments resulted in significantly reduced polyp burden, and decreased urinary prostaglandins, but sulindac-PC treatment also resulted in the reduction of gastric lesions compared to sulindac alone. CONCLUSIONS: Together these data provide pre-clinical support for combining NSAIDs with a phospholipid, such as phosphatidylcholine to reduce GI toxicity while maintaining chemopreventive efficacy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Pólipos do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , Sulindaco/farmacologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Pólipos do Colo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Fosfolipídeos/farmacologia
7.
Oncol Lett ; 18(6): 6243-6248, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31788101

RESUMO

The potential role of non-steroidal anti-inflammatory drug (NSAID) therapy in the prevention and treatment of cancer has generated considerable research interest. Phosphatidylcholine (PC)-associated NSAIDs decrease the gastrointestinal side effects of NSAID therapy, and may be more effective than traditional NSAIDs in limiting tumor growth. In the present study, human cells representing three major breast cancer subtypes were cultured with aspirin, indomethacin and PC-associated forms of each drug, with PC alone as a control. All tested drugs decreased the tumor cell number after 8 days of culture, with PC-NSAIDs having the greatest inhibitory effect, and NSAIDs alone, particularly aspirin, having the least effect. PC alone was effective in limiting the proliferation of all cell lines, suggesting that the two components of PC-NSAIDs have an additive effect. The ELISA results did not support a strong role for inhibition of cyclooxygenase enzymes in the decrease in cancer cell proliferation, which may account for the limited effectiveness of aspirin alone. PC-NSAIDs, particularly indomethacin-PC, are attractive candidate drugs in the prevention and treatment of different types of breast cancer, including triple negative breast cancer.

8.
Cancer Res ; 79(15): 3820-3823, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31300475

RESUMO

Aspirin, when administered at low doses, has emerged as a powerful anticancer drug due to both chemopreventive activity against many forms of cancer and its ability to block metastases when administered postdiagnosis. Platelets, which are often elevated in circulation during the latter stages of cancer, are known to promote epithelial-mesenchymal transition, cancer cell growth, survival in circulation, and angiogenesis at sites of metastases. Low-dose aspirin has been demonstrated to block this procarcinogenic action of platelets. In this article, we present evidence that aspirin's unique ability to irreversibly inhibit platelet cyclooxygenase-1 is a key mechanism by which aspirin exerts anticancer activity.


Assuntos
Aspirina/farmacologia , Plaquetas/efeitos dos fármacos , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Plaquetas/patologia , Inibidores de Ciclo-Oxigenase/farmacologia , Humanos , Neoplasias/patologia
10.
Oncol Lett ; 15(5): 6688-6694, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29616131

RESUMO

The chemopreventive activity of non-steroidal anti-inflammatory drugs (NSAIDs), particularly aspirin, has been well demonstrated in preclinical and clinical studies. However, the primary side effect from this class of drug is gastrointestinal (GI) bleeding, which has limited the widespread use of NSAIDs for the prevention of cancer. The development of GI-safer NSAIDs, which are associated with phosphatidylcholine (PC) may provide a solution to this therapeutic problem. In the present study, the efficacy of two NSAIDs, aspirin and indomethacin, were compared using murine colon cancer cell line MC-26. Each NSAID was assessed alone and in combination with PC, using in vitro and in vivo systems. The results reveal that the PC-associated NSAIDs had a significantly higher degree of protection against cancer cell growth compared with the unmodified NSAIDs. It was also observed that Aspirin-PC and Indomethacin-PC prevented the metastatic spread of cancer cells in a syngeneic mouse model. These results support the potential use of PC-NSAIDs for the chemoprevention of colorectal cancer.

11.
J Dent Maxillofac Surg ; 1(1): 67-70, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30603738

RESUMO

We sought to determine the effects of smoking on surfactant lipids and proteins in saliva. Levels of sphingomyelin (Sph) phosphatidylcholine (PC) and lyso-PC (LPC) were determined by thin layer chromatography. Levels of surfactant protein A (SP-A) were determined by western analysis using antibodies specific for SP-A. Significance of the results was determined by the student's t-test. The LPC/PC ratio had a tendency to be much higher in smokers compared to nonsmokers. LPC levels were significantly higher in females smokers compared to male smokers. Additionally, levels of SP-A were significantly reduced in females smokers compared to non-smokers. Smoking alters surfactant protein and LPC/PC ratios in saliva. There is a significant difference in the effects in females compared to males. Findings suggest smoking alters the composition of saliva that may reduce protection of the oral cavity, which may explain why women smokers are at greater risk of developing oral mucositis.

12.
Cancer Prev Res (Phila) ; 10(2): 142-152, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27998883

RESUMO

The mechanism by which aspirin consumption is linked to significant reductions in the incidence of multiple forms of cancer and metastatic spread to distant tissues, resulting in increased cancer patient survival is not well understood. In this study, using colon cancer as an example, we provide both in vitro (cell culture) and in vivo (chemically induced mouse model of colon cancer) evidence that this profound antineoplastic action may be associated with aspirin's ability to irreversibly inhibit COX-1-mediated platelet activation, thereby blocking platelet-cancer cell interactions, which promote cancer cell number and invasive potential. This process may be driven by platelet-induced epithelial-mesenchymal transition (EMT), as assessed using confocal microscopy, based upon changes in cell morphology, growth characteristics and fibronectin expression, and biochemical/molecular analysis by measuring changes in the expression of the EMT markers; vimentin, ß-catenin, and SNAIL. We also provide evidence that a novel, gastrointestinal-safe phosphatidylcholine (PC)-associated aspirin, PL2200 Aspirin, possesses the same or more pronounced actions versus unmodified aspirin with regard to antiplatelet effects (in vitro: reducing platelet activation as determined by measuring the release of thromboxane and VEGF in culture medium; in vivo: inhibiting platelet number/activation and extravasation into tumor tissue) and chemoprevention (in vitro: inhibiting colonic cell growth and invasive activity; in vivo: inhibiting colonic dysplasia, inflammation, and tumor mass). These results suggest that aspirin's chemopreventive effects may be due, in part, to the drug blocking the proneoplastic action of platelets, and the potential use of Aspirin-PC/PL2200 as an effective and safer chemopreventive agent for colorectal cancer and possibly other cancers. Cancer Prev Res; 10(2); 142-52. ©2016 AACR.


Assuntos
Aspirina/farmacologia , Neoplasias do Colo/patologia , Ciclo-Oxigenase 1/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C
13.
Mol Cancer Ther ; 15(12): 2894-2904, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27638860

RESUMO

To determine the efficacy of a novel and safer (for gastrointestinal tract) aspirin (aspirin-PC) in preclinical models of ovarian cancer, in vitro dose-response studies were performed to compare the growth-inhibitory effect of aspirin-PC versus aspirin on three human (A2780, SKOV3ip1, and HeyA8) and a mouse (ID8) ovarian cancer cell line over an 8-day culture period. In the in vivo studies, the aspirin test drugs were studied alone and in the presence of a VEGF-A inhibitor (bevacizumab or B20), due to an emerging role for platelets in tumor growth following antiangiogenic therapy, and we examined their underlying mechanisms. Aspirin-PC was more potent (vs. aspirin) in blocking the growth of both human and mouse ovarian cancer cells in monolayer culture. Using in vivo model systems of ovarian cancer, we found that aspirin-PC significantly reduced ovarian cancer growth by 50% to 90% (depending on the ovarian cell line). The efficacy was further enhanced in combination with Bevacizumab or B20. The growth-inhibitory effect on ovarian tumor mass and number of tumor nodules was evident, but less pronounced for aspirin and the VEGF inhibitors alone. There was no detectable gastrointestinal toxicity. Both aspirin and aspirin-PC also inhibited cell proliferation, angiogenesis, and increased apoptosis of ovarian cancer cells. In conclusion, PC-associated aspirin markedly inhibits the growth of ovarian cancer cells, which exceeds that of the parent drug, in both cell culture and in mouse model systems. We also found that both aspirin-PC and aspirin have robust antineoplastic action in the presence of VEGF-blocking drugs. Mol Cancer Ther; 15(12); 2894-904. ©2016 AACR.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Aspirina/farmacologia , Neovascularização Patológica , Neoplasias Ovarianas/patologia , Fosfatidilcolinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Hipóxia/tratamento farmacológico , Hipóxia/metabolismo , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Tromboxanos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Physiol Rep ; 4(6)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27033447

RESUMO

NSAIDuse is limited due to the drugs' toxicity to the gastrointestinal mucosa, an action incompletely understood. Lower gut injury induced byNSAIDs is dependent on bile secretion and is reported to increase the growth of a number of bacterial species, including an enterococcal species,Enterococcus faecalis This study examined the relationships between indomethacin (INDO)-induced intestinal injury/bleeding, small bowel overgrowth (SBO) and dissemination of enterococci, and the contribution of bile secretion to these pathological responses. Rats received either a sham operation (SO) or bile duct ligation (BDL) prior to administration of two daily subcutaneous doses of saline orINDO, and 24 h later, biopsies of ileum and liver were collected for plating on selective bacterial media. Fecal hemoglobin (Hb) and blood hematocrit (Hct) were measured to assess intestinal bleeding. Of the four treatment groups, onlySO/INDOrats experienced a significant 10- to 30-fold increase in fecal Hb and reduction in Hct, indicating thatBDLattenuatedINDO-induced intestinal injury/bleeding. Ileal enterococcal colony-forming units were significantly increased (500- to 1000-fold) inSO/INDOrats. Of all groups, only theSO/INDOrats demonstrated gut injury, and this was associated with enterococcal overgrowth of the gut and dissemination to the liver. We also demonstrated thatINDO-induced intestinal injury andE. faecalisovergrowth was independent of the route of administration of the drug, as similar findings were observed in rats orally dosed with theNSAID Bile secretion plays an important role inINDO-induced gut injury and appears to support enterococcal overgrowth of the intestine.NSAID-induced enterococcalSBOmay be involved either as a compensatory response to gut injury or with the pathogenic process itself and the subsequent development of sepsis.


Assuntos
Anti-Inflamatórios não Esteroides , Ductos Biliares/metabolismo , Bile/metabolismo , Enterococcus faecalis/crescimento & desenvolvimento , Hemorragia Gastrointestinal/microbiologia , Doenças do Íleo/microbiologia , Íleo/microbiologia , Indometacina , Animais , Translocação Bacteriana , Ductos Biliares/cirurgia , Modelos Animais de Doenças , Enterococcus faecalis/metabolismo , Fezes/química , Hemorragia Gastrointestinal/induzido quimicamente , Hemorragia Gastrointestinal/metabolismo , Hemorragia Gastrointestinal/patologia , Hemoglobinas/metabolismo , Doenças do Íleo/induzido quimicamente , Doenças do Íleo/metabolismo , Doenças do Íleo/patologia , Íleo/metabolismo , Íleo/patologia , Ligadura , Fígado/microbiologia , Masculino , Ratos Sprague-Dawley
15.
Curr Protoc Pharmacol ; 72: 5.58.1-5.58.42, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26995548

RESUMO

Animal models of experimentally induced inflammatory bowel disease (IBD) are useful for understanding more about the mechanistic basis of the disease, identifying new targets for therapeutic intervention, and testing novel therapeutics. This unit provides detailed protocols for five widely used mouse models of experimentally induced intestinal inflammation: chemical induction of colitis by dextran sodium sulfate (DSS), hapten-induced colitis via 2,4,6-trinitrobenzene sulfonic acid (TNBS), Helicobacter-induced colitis in mdr1a(-/-) mice, the CD4(+) CD45RB(hi) SCID transfer colitis model, and the IL-10(-/-) colitis model. © 2016 by John Wiley & Sons, Inc.


Assuntos
Modelos Animais de Doenças , Inflamação/induzido quimicamente , Doenças Inflamatórias Intestinais/induzido quimicamente , Animais , Colite/induzido quimicamente , Colite/metabolismo , Sulfato de Dextrana/farmacologia , Feminino , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Interleucina-10/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos SCID , Trinitrobenzenos/farmacologia , Ácido Trinitrobenzenossulfônico/farmacologia
16.
Am J Physiol Gastrointest Liver Physiol ; 308(9): G785-93, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25721304

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used to treat a number of conditions, and proton pump inhibitors (PPIs) are often used to prevent NSAID-induced gastric mucosal damage; however, the effects of NSAIDs on intestinal motility are poorly understood. The purpose of the present study is to determine the effects of a prototypical NSAID, indomethacin, either alone or in conjunction with the PPI omeprazole, on intestinal motility. Rats were randomly divided into four groups treated with vehicle, omeprazole, indomethacin, or a combination of indomethacin and omeprazole. Intestinal motility and transit were measured along with inflammatory mediators in the intestinal smooth muscle, markers of mucosal damage, and bacterial counts in the intestinal wall. Indomethacin, but not omeprazole, caused mucosal injury indicated by lower gut bleeding; however, both omeprazole and indomethacin suppressed contractile activity and frequency in the distal part of the small intestine. Cotreatment with omeprazole did not reduce indomethacin-induced intestinal bleeding. Furthermore, although indomethacin caused increased inflammation as indicated by increased edema development and inflammatory mediators, cotreatment with omeprazole did not reduce inflammation in the intestinal smooth muscle or prevent the increased bacterial count in the intestinal wall induced by indomethacin. We conclude that both NSAID and PPI treatment suppressed contractile activity in the distal regions of the small intestine. The suppression of intestinal contractility was associated with increased inflammation in both cases; however, indomethacin and omeprazole appear to affect intestinal motility by different mechanisms.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Motilidade Gastrointestinal/efeitos dos fármacos , Íleo/efeitos dos fármacos , Indometacina/toxicidade , Jejuno/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Omeprazol/toxicidade , Inibidores da Bomba de Prótons/toxicidade , Animais , Biomarcadores/metabolismo , Enterite/induzido quimicamente , Enterite/metabolismo , Enterite/fisiopatologia , Hemorragia Gastrointestinal/induzido quimicamente , Hemorragia Gastrointestinal/patologia , Hemorragia Gastrointestinal/fisiopatologia , Íleo/metabolismo , Íleo/microbiologia , Íleo/patologia , Íleo/fisiopatologia , Mediadores da Inflamação/metabolismo , Jejuno/metabolismo , Jejuno/microbiologia , Jejuno/patologia , Jejuno/fisiopatologia , Masculino , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Ratos Sprague-Dawley
17.
Am J Physiol Gastrointest Liver Physiol ; 308(3): G217-22, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25477376

RESUMO

Indomethacin is a powerful analgesic nonsteroidal anti-inflammatory drug (NSAID), but is limited in use by its primary side effect to cause gastrointestinal bleeding and serious injury. One factor important for exacerbating NSAID injury is the presence of bile acids, which may interact with indomethacin to form toxic mixed micelles in the gut. The development of a safer gastrointestinal formulation of indomethacin that is chemically complexed with phosphatidylcholine (PC-indomethacin) may offer an improved therapeutic agent, particularly in the presence of bile acid, but its potential protective mechanism is incompletely understood. Intestinal epithelial cells (IEC-6) were tested for injury with indomethacin (alone and plus various bile acids) compared with PC-indomethacin (alone and plus bile acids). To explore a role for bile acid uptake into cells as a requirement for NSAID injury, studies were performed using Madin-Darby canine kidney cells transfected with the apical sodium-dependent bile acid transporter (ASBT). Indomethacin, but not PC-indomethacin, was directly and dose-dependently injurious to IEC-6 cells. Similarly, the combination of any bile acid plus indomethacin, but not PC-indomethacin, induced cell injury. The expression of ASBT had a modest effect on the acute cytotoxicity of indomethacin in the presence of some conjugated bile acids. Complexing PC with indomethacin protected against the acute intestinal epithelial injury caused by indomethacin regardless of the presence of bile acids. The presence of luminal bile acid, but not its carrier-mediated uptake into the enterocyte, is required for acute indomethacin-induced cell injury. It is likely that initial cell damage induced by indomethacin occurs at or near the cell membrane, an effect exacerbated by bile acids and attenuated by PC.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Ácidos e Sais Biliares/toxicidade , Hemorragia Gastrointestinal/tratamento farmacológico , Indometacina/toxicidade , Fosfatidilcolinas/farmacologia , Animais , Membrana Celular/efeitos dos fármacos , Fármacos Gastrointestinais/farmacologia , Hemorragia Gastrointestinal/induzido quimicamente , Camundongos , Transportadores de Ânions Orgânicos Dependentes de Sódio/efeitos dos fármacos , Simportadores/efeitos dos fármacos
18.
J Biol Chem ; 288(50): 35660-70, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24165125

RESUMO

Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.


Assuntos
Ácido Desoxicólico/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Relação Dose-Resposta a Droga , Lipossomos/química , Lipossomos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Micelas , Nanoestruturas/química , Ratos , Solubilidade , Proteínas ras/química , Proteínas ras/metabolismo
19.
Cell Physiol Biochem ; 32(3): 675-86, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24030139

RESUMO

BACKGROUND/AIMS: The small molecule, Tolfenamic acid (TA) has shown anti-cancer activity in pre-clinical models and is currently in Phase I clinical trials at MD Anderson Cancer Center Orlando. Since specificity and toxicity are major concerns for investigational agents, we tested the effect of TA on specific targets, and assessed the cellular and organismal toxicity representing pre-clinical studies in cancer. METHODS: Panc1, L3.6pl, and MiaPaCa-2 (pancreatic cancer), hTERT-HPNE(normal), and differentiated/un-differentiated SH-SY5Y (neuroblastoma) cells were treated with increasing concentrations of TA. Cell viability and effect on specific molecular targets, Sp1 and survivin were determined. Athymic nude mice were treated with vehicle or TA (50mg/kg, 3times/week for 6 weeks) and alterations in the growth pattern, hematocrit, and histopathology of gut, liver, and stomach were monitored. RESULTS: TA treatment decreased cell proliferation and inhibited the expression of Sp1 and survivin in cancer cells while only subtle response was observed in normal (hTERT-HPNE) and differentiated SH-SY5Y cells. Mice studies revealed no effect on body weight and hematocrit. Furthermore, TA regimen did not cause signs of internal-bleeding or damage to vital tissues in mice. CONCLUSION: These results demonstrate that TA selectively inhibits malignant cell growth acting on specific targets and its chronic treatment did not cause apparent toxicity in nude mice.


Assuntos
Antineoplásicos/toxicidade , Peso Corporal/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , ortoaminobenzoatos/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Hematócrito , Proteínas Inibidoras de Apoptose/metabolismo , Intestinos/patologia , Fígado/patologia , Camundongos , Camundongos Nus , Proteínas Repressoras/metabolismo , Fator de Transcrição Sp1/metabolismo , Estômago/patologia , Survivina
20.
Gut Liver ; 7(1): 7-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23423874

RESUMO

The mucosa of the gastrointestinal (GI) tract exhibits hydrophobic, nonwettable properties that protect the underlying epithelium from gastric acid and other luminal toxins. These biophysical characteristics appear to be attributable to the presence of an extracellular lining of surfactant-like phospholipids on the luminal aspects of the mucus gel layer. Phosphatidylcholine (PC) represents the most abundant and surface-active form of gastric phospholipids. PC protected experimental rats from a number of ulcerogenic agents and/or conditions including nonsteroidal anti-inflammatory drugs (NSAIDs), which are chemically associated with PC. Moreover, preassociating a number of the NSAIDs with exogenous PC prevented a decrease in the hydrophobic characteristics of the mucus gel layer and protected rats against the injurious GI side effects of NSAIDs while enhancing and/or maintaining their therapeutic activity. Bile plays an important role in the ability of NSAIDs to induce small intestinal injury. NSAIDs are rapidly absorbed from the GI tract and, in many cases, undergo enterohepatic circulation. Thus, NSAIDs with extensive enterohepatic cycling are more toxic to the GI tract and are capable of attenuating the surface hydrophobic properties of the mucosa of the lower GI tract. Biliary PC plays an essential role in the detoxification of bile salt micelles. NSAIDs that are secreted into the bile injure the intestinal mucosa via their ability to chemically associate with PC, which forms toxic mixed micelles and limits the concentration of biliary PC available to interact with and detoxify bile salts. We have worked to develop a family of PC-associated NSAIDs that appear to have improved GI safety profiles with equivalent or better therapeutic efficacy in both rodent model systems and pilot clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...