Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 14(4): 349-57, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21303437

RESUMO

The earth's future climate state is highly dependent upon changes in terrestrial C storage in response to rising concentrations of atmospheric CO2. Here we show that consistently enhanced rates of net primary production (NPP) are sustained by a C-cascade through the root-microbe-soil system; increases in the flux of C belowground under elevated CO2 stimulated microbial activity, accelerated the rate of soil organic matter decomposition and stimulated tree uptake of N bound to this SOM. This process set into motion a positive feedback maintaining greater C gain under elevated CO2 as a result of increases in canopy N content and higher photosynthetic N-use efficiency. The ecosystem-level consequence of the enhanced requirement for N and the exchange of plant C for N belowground is the dominance of C storage in tree biomass but the preclusion of a large C sink in the soil.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Árvores/crescimento & desenvolvimento , Biomassa , Ciclo do Carbono , Clima , Ecossistema , Ciclo do Nitrogênio , North Carolina , Raízes de Plantas , Microbiologia do Solo
2.
Ecol Appl ; 17(3): 765-78, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17494395

RESUMO

European settlement of New England brought about a novel disturbance regime that impacted rivers and estuaries through overfishing, deforestation, dams, and water pollution. The negative consequences of these activities intensified with industrialization in the 19th and 20th centuries, often resulting in ecosystem degradation. Since environmental legislation was implemented in the 1970s, improvement in water quality has been tangible and widespread; however, ecological recovery can require substantial amounts of time and may never be complete. To document the natural baseline conditions and investigate the recovery of a severely degraded river-estuary complex in mid-coast Maine, we examined diatoms, pollen, total organic carbon, total nitrogen, stable isotopes, total phosphorus, biogenic silica, and trace metals in intertidal sediments and established a chronology with 14C, 210Pb, and indicator pollen horizons. Both climate variability and human effects were evident in the sedimentary record of Merrymeeting Bay, the freshwater tidal portion of the Kennebec estuary. Natural climate variability was apparent in an episode of high sedimentation and altered diatom abundance during the 12th and 13th centuries and in changing pollen abundances between the 16th and 19th centuries, indicative of regional cooling. During the 18th century, colonial land clearance began an era of high sedimentation and eutrophication that strongly intensified with industrialization during the late 19th and 20th centuries. Improvements in water quality over the past 30 years in response to environmental regulation had little effect on ecosystem recovery as represented by the sedimentary record. Diatom composition and productivity and high fluxes of organic C, total P, and biogenic Si in recent sediments indicate that rates of nutrient loading remain high. These environmental proxies imply that aquatic productivity in Merrymeeting Bay was originally nutrient limited and water clarity high, relative to today. Further recovery may require more stringent regulation of nutrient inputs from industrial and municipal point sources. This historical study can contribute to public debate about the environmental management of this unusual river-estuary complex by describing its long-term natural baseline, thereby illustrating the upper limit of its potential for recovery.


Assuntos
Monitoramento Ambiental/história , Eutrofização , Fósseis , Carbono/análise , Carbono/história , Diatomáceas , Sedimentos Geológicos , História do Século XV , História do Século XVI , História do Século XVII , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , História Antiga , História Medieval , Maine , Nitrogênio/análise , Nitrogênio/história , Fósforo/análise , Fósforo/história , Pólen , Rios , Dióxido de Silício/análise , Dióxido de Silício/história
3.
Ecology ; 87(1): 15-25, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16634293

RESUMO

A hypothesis for progressive nitrogen limitation (PNL) proposes that net primary production (NPP) will decline through time in ecosystems subjected to a step-function increase in atmospheric CO2. The primary mechanism driving this response is a rapid rate of N immobilization by plants and microbes under elevated CO2 that depletes soils of N, causing slower rates of N mineralization. Under this hypothesis, there is little long-term stimulation of NPP by elevated CO2 in the absence of exogenous inputs of N. We tested this hypothesis using data on the pools and fluxes of C and N in tree biomass, microbes, and soils from 1997 through 2002 collected at the Duke Forest free-air CO2 enrichment (FACE) experiment. Elevated CO2 stimulated NPP by 18-24% during the first six years of this experiment. Consistent with the hypothesis for PNL, significantly more N was immobilized in tree biomass and in the O horizon under elevated CO2. In contrast to the PNL hypothesis, microbial-N immobilization did not increase under elevated CO2, and although the rate of net N mineralization declined through time, the decline was not significantly more rapid under elevated CO2. Ecosystem C-to-N ratios widened more rapidly under elevated CO2 than ambient CO2 indicating a more rapid rate of C fixation per unit of N, a processes that could delay PNL in this ecosystem. Mass balance calculations demonstrated a large accrual of ecosystem N capital. Is PNL occurring in this ecosystem and will NPP decline to levels under ambient CO2? The answer depends on the relative strength of tree biomass and O-horizon N immobilization vs. widening C-to-N ratios and ecosystem-N accrual as processes that drive and delay PNL, respectively. Only direct observations through time will definitively answer this question.


Assuntos
Dióxido de Carbono/fisiologia , Ecossistema , Nitrogênio/metabolismo , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Bactérias/química , Biomassa , Nitrogênio/análise , Solo/análise , Microbiologia do Solo , Fatores de Tempo , Árvores/química , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...