Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(12): 3705-3720, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37285481

RESUMO

The structure of proteins has long been recognized to hold the key to understanding and engineering their function, and rapid advances in structural biology and protein structure prediction are now supplying researchers with an ever-increasing wealth of structural information. Most of the time, however, structures can only be determined in free energy minima, one at a time. While conformational flexibility may thus be inferred from static end-state structures, their interconversion mechanisms─a central ambition of structural biology─are often beyond the scope of direct experimentation. Given the dynamical nature of the processes in question, many studies have attempted to explore conformational transitions using molecular dynamics (MD). However, ensuring proper convergence and reversibility in the predicted transitions is extremely challenging. In particular, a commonly used technique to map out a path from a starting to a target conformation called steered MD (SMD) can suffer from starting-state dependence (hysteresis) when combined with techniques such as umbrella sampling (US) to compute the free energy profile of a transition. Here, we study this problem in detail on conformational changes of increasing complexity. We also present a new, history-independent approach that we term "MEMENTO" (Morphing End states by Modelling Ensembles with iNdependent TOpologies) to generate paths that alleviate hysteresis in the construction of conformational free energy profiles. MEMENTO utilizes template-based structure modelling to restore physically reasonable protein conformations based on coordinate interpolation (morphing) as an ensemble of plausible intermediates, from which a smooth path is picked. We compare SMD and MEMENTO on well-characterized test cases (the toy peptide deca-alanine and the enzyme adenylate kinase) before discussing its use in more complicated systems (the kinase P38α and the bacterial leucine transporter LeuT). Our work shows that for all but the simplest systems SMD paths should not in general be used to seed umbrella sampling or related techniques, unless the paths are validated by consistent results from biased runs in opposite directions. MEMENTO, on the other hand, performs well as a flexible tool to generate intermediate structures for umbrella sampling. We also demonstrate that extended end-state sampling combined with MEMENTO can aid the discovery of collective variables on a case-by-case basis.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Proteínas/química , Conformação Proteica , Entropia , Adenilato Quinase
2.
PLoS Comput Biol ; 17(8): e1009328, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428231

RESUMO

Rationally and efficiently modifying the amino-acid sequence of proteins to control their ability to undergo liquid-liquid phase separation (LLPS) on demand is not only highly desirable, but can also help to elucidate which protein features are important for LLPS. Here, we propose a computational method that couples a genetic algorithm to a sequence-dependent coarse-grained protein model to evolve the amino-acid sequences of phase-separating intrinsically disordered protein regions (IDRs), and purposely enhance or inhibit their capacity to phase-separate. We validate the predicted critical solution temperatures of the mutated sequences with ABSINTH, a more accurate all-atom model. We apply the algorithm to the phase-separating IDRs of three naturally occurring proteins, namely FUS, hnRNPA1 and LAF1, as prototypes of regions that exist in cells and undergo homotypic LLPS driven by different types of intermolecular interaction, and we find that the evolution of amino-acid sequences towards enhanced LLPS is driven in these three cases, among other factors, by an increase in the average size of the amino acids. However, the direction of change in the molecular driving forces that enhance LLPS (such as hydrophobicity, aromaticity and charge) depends on the initial amino-acid sequence. Finally, we show that the evolution of amino-acid sequences to modulate LLPS is strongly coupled to the make-up of the medium (e.g. the presence or absence of RNA), which may have significant implications for our understanding of phase separation within the many-component mixtures of biological systems.


Assuntos
Proteínas Intrinsicamente Desordenadas/isolamento & purificação , Extração Líquido-Líquido/métodos , Algoritmos , Sequência de Aminoácidos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...