Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 12: 697232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276631

RESUMO

Neisseria meningitidis is a gram-negative bacterium that often asymptomatically colonizes the human nasopharyngeal tract. These bacteria cross the epithelial barrier can cause life-threatening sepsis and/or meningitis. Antimicrobial peptides are one of the first lines of defense against invading bacterial pathogens. Human beta-defensin 2 (hBD2) is an antimicrobial peptide with broad antibacterial activity, although its mechanism of action is poorly understood. Here, we investigated the effect of hBD2 on N. meningitidis. We showed that hBD2 binds to and kills actively growing meningococcal cells. The lethal effect was evident after 2 h incubation with the peptide, which suggests a slow killing mechanism. Further, the membrane integrity was not changed during hBD2 treatment. Incubation with lethal doses of hBD2 decreased the presence of diplococci; the number and size of bacterial microcolonies/aggregates remained constant, indicating that planktonic bacteria may be more susceptible to the peptide. Meningococcal DNA bound hBD2 in mobility shift assays and inhibited the lethal effect of hBD2 in a dose-dependent manner both in suspension and biofilms, supporting the interaction between hBD2 and DNA. Taken together, the ability of meningococcal DNA to bind hBD2 opens the possibility that extracellular DNA due to bacterial lysis may be a means of N. meningitidis to evade immune defenses.

2.
Infect Immun ; 89(10): e0029621, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34125601

RESUMO

Neisseria meningitidis is the etiologic agent of meningococcal meningitis and sepsis. Initial colonization of meningococci in the upper respiratory tract epithelium is crucial for disease development. The colonization occurs in several steps and expression of type IV pili (Tfp) is essential for both attachment and microcolony formation of encapsulated bacteria. Previously, we have shown that host-derived lactate induces synchronized dispersal of meningococcal microcolonies. In this study, we demonstrated that lactate-induced dispersal is dependent on bacterial concentration but not on the quorum-sensing system autoinducer-2 or the two-component systems NarP/NarQ, PilR/PilS, NtrY/NtrX, and MisR/MisS. Further, there were no changes in expression of genes related to assembly, elongation, retraction, and modification of Tfp throughout the time course of lactate induction. By using pilT and pptB mutants, however, we found that lactate-induced dispersal was dependent on PilT retraction but not on phosphoglycerol modification of Tfp even though the PptB activity was important for preventing reaggregation postdispersal. Furthermore, protein synthesis was required for lactate-induced dispersal. Finally, we found that at a lower temperature, lactate-induced dispersal was delayed and unsynchronized, and bacteria reformed microcolonies. We conclude that lactate-induced microcolony dispersal is dependent on bacterial concentration, PilT-dependent Tfp retraction, and protein synthesis and is influenced by environmental temperature.


Assuntos
Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/metabolismo , Lactatos/metabolismo , Neisseria meningitidis/metabolismo , Contagem de Células/métodos , Células Epiteliais/metabolismo , Proteínas de Fímbrias/metabolismo , Sepse/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...