Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(4): 2334-2344, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35080868

RESUMO

Produced water (PW), a waste byproduct of oil and gas extraction, is a complex mixture containing numerous organic solubles and elemental species; these constituents range from polycyclic aromatic hydrocarbons to naturally occurring radioactive materials. Identification of these compounds is critical in developing reuse and disposal protocols to minimize environmental contamination and health risks. In this study, versatile extraction methodologies were investigated for the untargeted analysis of PW. Thin-film solid-phase microextraction with hydrophilic-lipophilic balance particles was utilized for the extraction of organic solubles from eight PW samples from the Permian Basin and Eagle Ford formation in Texas. Gas chromatography-mass spectrometry analysis found a total of 266 different organic constituents including 1,4-dioxane, atrazine, pyridine, and PAHs. The elemental composition of PW was evaluated using dispersive solid-phase extraction followed by inductively coupled plasma-mass spectrometry, utilizing a new coordinating sorbent, poly(pyrrole-1-carboxylic acid). This confirmed the presence of 29 elements including rare earth elements, as well as hazardous metals such as Cr, Cd, Pb, and U. Utilizing chemometric analysis, both approaches facilitated the discrimination of each PW sample based on their geochemical origin with a prediction accuracy above 90% using partial least-squares-discriminant analysis, paving the way for PW origin tracing in the environment.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Microextração em Fase Sólida , Águas Residuárias/química , Água , Poluentes Químicos da Água/análise
2.
Anal Bioanal Chem ; 413(21): 5321-5332, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34254157

RESUMO

In the host, pathogenic microorganisms have developed stress responses to cope with constantly changing environments. Stress responses are directly related to changes in several metabolomic pathways, which could hamper microorganisms' unequivocal identification. We evaluated the effect of various in vitro stress conditions (acidic, basic, oxidative, ethanolic, and saline conditions) on the metabolism of Staphylococcus aureus, Bacillus cereus, and Pseudomonas aeruginosa, which are common lung pathogens. The metabolite profiles of the bacteria were analyzed using liquid chromatography coupled to triple quadrupole and quadrupole time-of-flight mass spectrometry. The advantages of targeted and untargeted analysis combined with univariate and multivariate statistical analysis (principal component analysis, hierarchical cluster analysis, partial least square discriminant analysis, random forest) were combined to unequivocally identify bacterial species. In normal in vitro conditions, the targeted methodology, based on the analysis of primary metabolites, enabled the rapid and efficient discrimination of the three bacteria. In changing in vitro conditions and specifically in presence of the various stressors, the untargeted methodology proved to be more valuable for the global and accurate differentiation of the three bacteria, also considering the type of stress environment within each species. In addition, species-specific metabolites (i.e., fatty acids, polysaccharides, peptides, and nucleotide bases derivatives) were putatively identified. Good intra-day repeatability and inter-day repeatability (< 10% RSD and < 15% RSD, respectively) were obtained for the targeted and the untargeted methods. This untargeted approach highlights its importance in unusual (and less known) bacterial growth environments, being a powerful tool for infectious disease diagnosis, where the accurate classification of microorganisms is sought.


Assuntos
Bacillus cereus/metabolismo , Metaboloma , Pseudomonas aeruginosa/metabolismo , Staphylococcus aureus/metabolismo , Bacillus cereus/crescimento & desenvolvimento , Humanos , Metabolômica , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Estresse Fisiológico
3.
Anal Chim Acta ; 1172: 338668, 2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34119014

RESUMO

Although all beer is brewed using the same four classes of ingredients, contemporary beer styles show wide variation in flavor and color, suggesting differences in their chemical profiles. A selection of 32 beers covering five styles (India pale ale, blonde, stout, wheat, and sour) were investigated to determine chemical features, which discriminate between popular beer styles. The beers were analyzed in an untargeted fashion using liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). The separation and detection method were tuned to include compounds from important beer components, namely iso-α-acids and phenolic compounds. Due to the sheer number of unknown compounds in beer, multivariate analysis and machine learning techniques were used to pinpoint some of the compounds most influential in distinguishing beer styles. It was determined that while many phenols and iso-α-acids were present in the beers, they were not the compounds most responsible for the variations between styles. However, it was possible to discriminate each beer style using multivariate analysis. Principal component analysis (PCA) was able to separate and cluster the individual beer samples by style. A combination of statistical tools were used to predict formulas for some of the most influential metabolites from each style. Machine learning models accurately classified patterns in the five beer styles, indicating that they can be precisely distinguished by their nonvolatile chemical profile.


Assuntos
Cerveja , Aprendizado de Máquina , Cerveja/análise , Cromatografia Líquida , Espectrometria de Massas , Análise Multivariada
4.
J Sep Sci ; 44(14): 2764-2772, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34013669

RESUMO

Beer styles show wide variation in color, flavor, and clarity, due to differences in their chemical content. Some of the major flavor compounds in beer are isomerized alpha acids and phenolic compounds. These were investigated as potentially discerning features between beer styles. A selection of 32 American beers covering five styles was analyzed using liquid chromatography quadrupole time-of-flight mass spectrometry, which resulted in high mass accuracy chromatograms of the studied analytes. Distinctions between the presence or relative concentrations of certain compounds were observed and related back to brewing ingredients and procedures. For example, vanillin was only observed in stout beers due to the use of roasted barley malts for brewing, while chlorogenic acid isomers were found in two sours at relatively high concentrations (189 and 34 mg/L) because of the fruits used to flavor the beers. Distinctions were further confirmed using multivariate analysis techniques, which separated three of the five beer styles (India pale ales, stouts, and sours).


Assuntos
Cerveja/análise , Cromatografia Líquida/métodos , Hidroxibenzoatos/análise , Fenóis/análise , Espectrometria de Massas em Tandem/métodos , Benzaldeídos/análise , Ácido Clorogênico/análise
5.
Anal Chim Acta ; 1141: 91-99, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33248666

RESUMO

Despite the same basic ingredients used in brewing, there is a significant variation in beer styles. With the rapid increase in craft brewing, beer styles have become even more numerous and complex in the recent past. A GC-MS/VUV (post-column split for dual detection) instrument with headspace high capacity SPME was used to investigate 21 different beers which represent three beer styles - India pale ales, blondes, and hefeweizens. Since results from untargeted studies can be affected by the sorbent material used, the extraction performances of three high capacity SPME fibers, i.e., polydimethylsiloxane, polydimethylsiloxane/carbon wide range, and polydimethylsiloxane/carbon wide range/divinylbenzene, were evaluated. Good reproducibility (<10% RSD) was obtained for each high capacity fiber using both detectors. The tandem MS/VUV detection coupled with GC separation proved to be particularly valuable for compound identification, especially for isomers and compounds with similar structures. The evaluation of VUV detection for untargeted analysis led to similar performances as MS detection. Both the VUV and the MS were able to effectively differentiate between beer styles using principal component analysis. In addition, the use of 3 different statistical approaches, one-way ANOVA (p-value < 0.05), partial least square discriminant analysis, and random forest, universally identified 12 of the components most influential in distinguishing the three beer styles (e.g., ß-myrcene, linalool, isopentyl acetate, 2,4-di-tert-butylphenol). This is the first reported evaluation of VUV detection and the first comparison of simultaneous VUV and MS detection for untargeted classification of complex mixtures using GC.


Assuntos
Cerveja , Microextração em Fase Sólida , Cerveja/análise , Cromatografia Gasosa-Espectrometria de Massas , Reprodutibilidade dos Testes , Vácuo
6.
J Sep Sci ; 43(9-10): 1915-1924, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32100939

RESUMO

The continued rise in the extraction of unconventional oil and gas across the globe poses many questions about how to manage these relatively new waste-streams. Produced water, the primary waste by-product, contains a diverse number of anthropogenic additives together with the numerous hydrocarbons extracted from the well. Due to potential environmental hazards, it is critical to characterize the chemical composition of this type of waste before proper disposal or remediation/reuse. In this work, a thin film solid phase microextraction approach was developed and optimized to characterize produced water. The thin film device consisted of hydrophilic-lipophilic balance particles embedded in polydimethylsiloxane and immobilized on a carbon mesh surface. These devices were chosen to provide broad extraction coverage and high reusability. Various parameters were evaluated to ensure reproducible results while minimizing analyte loss. This optimized protocol, consisting of a 15 min extraction followed by a short (3 s) rinsing step, enabled the reproducible analysis of produced water without any sample pretreatment. Extraction efficiency was suitable for both produced water additives and hydrocarbons. The developed approach was able to tentatively identify a total of 201 compounds from produced water samples, by using one-dimensional gas chromatography hyphenated to mass spectrometry and data deconvolution.

7.
Sci Total Environ ; 675: 73-80, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31026645

RESUMO

Driven by increased energy demands and technological advancements, the energy landscape of the United States has been changed by the expansion of unconventional oil and gas extraction. Unconventional development requires well stimulation, which uses millions of gallons of water per well and generates billions of gallons of wastewater annually. The waste matrix, referred to as produced water, has proven to be challenging to treat due to the complex physical, chemical, and biological composition, which can change over the lifetime of a production well. Here, forward osmosis was used as a remediation technique to extract fresh water from produced water procured from the Permian Basin region of west Texas. These data examine the durability of thin-film hollow-fiber membranes by determining how quickly the membranes irreversibly fouled at various flux rates during two modes of operation: a) active layer in contact with the draw solution (AL-DS); and b) active layer in contact with the feed solution (AL-FS). Membranes used in AL-DS mode fouled faster than their counterparts used in AL-FS mode. Additionally, membranes used with higher flux rates fouled more quickly than those used under low flux conditions. Ultimately, it was determined that produced water will require pretreatment prior to being concentrated using forward osmosis.

8.
Sci Total Environ ; 653: 82-90, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30408671

RESUMO

Unconventional oil and gas operations are on the rise, and they are an integral component to meeting the nation's energy needs. Produced water is the primary by-product of oil and gas operations, and it has proven challenging to treat to date. The aim of this study was to evaluate the feasibility of using forward osmosis with thin-film composite hollow fiber membranes as a remediation option for produced water with high total dissolved solids levels from the Permian Basin. Trials consisted of a series of 5 experiments in order to evaluate the performance of the membrane. Three PW samples, each from different locations, were used to conduct the series of experiments and compare the performance of the membranes on samples with TDS levels ranging from 16,000 to 210,000 mg/L. It was concluded that forward osmosis can be used to extract water from high salinity oil field brines and PW. Flux decreased over the course of the trials due to a combination of membrane fouling, concentration polarization, and temperature fluctuations. The flux of the PW was similar to the flux measured for the PW mimic with small difference due to the influence of activity on the osmotic pressure. The flux was also influenced by temperature and the linear velocity of the feed solution and draw solution.

9.
Sci Total Environ ; 643: 107-118, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29936154

RESUMO

Unconventional oil and gas development is achieved through a series of sub-processes, which utilize large amounts of water, proppant, and chemical additives to retrieve sequestered hydrocarbons from low permeability petroliferous strata. As a result, a large amount of wastewater is produced, which is traditionally disposed of via subsurface injection into non-productive stratum throughout the country. However, this method of waste management has been linked to the induction of seismic events in a number of regions across North America, calling into question the environmental stewardship and sustainability of subsurface waste disposal. Advancements in water treatment technologies have improved the efficacy and financial viability of produced water recycling for beneficial reuse in the oil and gas sector. This review will cover the various treatment options that are currently being utilized in shale energy basins to remove organic, inorganic, and biological constituents, as well as some emerging technologies that are designed to remove pertinent contaminants that would otherwise preclude the reuse of produced water for production well stimulation.

10.
Sci Total Environ ; 634: 1519-1529, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29710650

RESUMO

At the forefront of the discussions about climate change and energy independence has been the process of hydraulic fracturing, which utilizes large amounts of water, proppants, and chemical additives to stimulate sequestered hydrocarbons from impermeable subsurface strata. This process also produces large amounts of heterogeneous flowback and formation waters, the subsurface disposal of which has most recently been linked to the induction of anthropogenic earthquakes. As such, the management of these waste streams has provided a newfound impetus to explore recycling alternatives to reduce the reliance on subsurface disposal and fresh water resources. However, the biogeochemical characteristics of produced oilfield waste render its recycling and reutilization for production well stimulation a substantial challenge. Here we present a comprehensive analysis of produced waste from the Eagle Ford shale region before, during, and after treatment through adjustable separation, flocculation, and disinfection technologies. The collection of bulk measurements revealed significant reductions in suspended and dissolved constituents that could otherwise preclude untreated produced water from being utilized for production well stimulation. Additionally, a significant step-wise reduction in pertinent scaling and well-fouling elements was observed, in conjunction with notable fluctuations in the microbiomes of highly variable produced waters. Collectively, these data provide insight into the efficacies of available water treatment modalities within the shale energy sector, which is currently challenged with improving the environmental stewardship of produced water management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...