Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Leukemia ; 37(9): 1830-1841, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37495775

RESUMO

Isocitrate dehydrogenase (IDH) mutations are found in 20% of acute myeloid leukemia (AML) patients. However, only 30-40% of the patients respond to IDH inhibitors (IDHi). We aimed to identify a molecular vulnerability to tailor novel therapies for AML patients with IDH mutations. We characterized the transcriptional and epigenetic landscape with the IDH2i AG-221, using an IDH2 mutated AML cell line model and AML patient cohorts, and discovered a perturbed transcriptional regulatory network involving myeloid transcription factors that were partly restored after AG-221 treatment. In addition, hypermethylation of the HLA cluster caused a down-regulation of HLA class I genes, triggering an enhanced natural killer (NK) cell activation and an increased susceptibility to NK cell-mediated responses. Finally, analyses of DNA methylation data from IDHi-treated patients showed that non-responders still harbored hypermethylation in HLA class I genes. In conclusion, this study provides new insights suggesting that IDH mutated AML is particularly sensitive to NK cell-based personalized immunotherapy.


Assuntos
Isocitrato Desidrogenase , Leucemia Mieloide Aguda , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Epigênese Genética , Mutação , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Células Matadoras Naturais/metabolismo
2.
Nat Genet ; 54(3): 283-294, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35190730

RESUMO

DNA can determine where and when genes are expressed, but the full set of sequence determinants that control gene expression is unknown. Here, we measured the transcriptional activity of DNA sequences that represent an ~100 times larger sequence space than the human genome using massively parallel reporter assays (MPRAs). Machine learning models revealed that transcription factors (TFs) generally act in an additive manner with weak grammar and that most enhancers increase expression from a promoter by a mechanism that does not appear to involve specific TF-TF interactions. The enhancers themselves can be classified into three types: classical, closed chromatin and chromatin dependent. We also show that few TFs are strongly active in a cell, with most activities being similar between cell types. Individual TFs can have multiple gene regulatory activities, including chromatin opening and enhancing, promoting and determining transcription start site (TSS) activity, consistent with the view that the TF binding motif is the key atomic unit of gene expression.


Assuntos
Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição , Sítios de Ligação/genética , Genoma Humano/genética , Humanos , Ligação Proteica , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Mol Syst Biol ; 18(1): e10407, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020268

RESUMO

Mouse embryonic stem cells (mESCs) can adopt naïve, ground, and paused pluripotent states that give rise to unique transcriptomes. Here, we use transient transcriptome sequencing (TT-seq) to define both coding and non-coding transcription units (TUs) in these three pluripotent states and combine TT-seq with RNA polymerase II occupancy profiling to unravel the kinetics of RNA metabolism genome-wide. Compared to the naïve state (serum), RNA synthesis and turnover rates are globally reduced in the ground state (2i) and the paused state (mTORi). The global reduction in RNA synthesis goes along with a genome-wide decrease of polymerase elongation velocity, which is related to epigenomic features and alterations in the Pol II termination window. Our data suggest that transcription activity is the main determinant of steady state mRNA levels in the naïve state and that genome-wide changes in transcription kinetics invoke ground and paused pluripotent states.


Assuntos
RNA Polimerase II , Transcriptoma , Animais , Cinética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , Transcriptoma/genética
4.
Mol Syst Biol ; 17(1): e9873, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33502116

RESUMO

The growth of human cancer cells is driven by aberrant enhancer and gene transcription activity. Here, we use transient transcriptome sequencing (TT-seq) to map thousands of transcriptionally active putative enhancers in fourteen human cancer cell lines covering seven types of cancer. These enhancers were associated with cell type-specific gene expression, enriched for genetic variants that predispose to cancer, and included functionally verified enhancers. Enhancer-promoter (E-P) pairing by correlation of transcription activity revealed ~ 40,000 putative E-P pairs, which were depleted for housekeeping genes and enriched for transcription factors, cancer-associated genes, and 3D conformational proximity. The cell type specificity and transcription activity of target genes increased with the number of paired putative enhancers. Our results represent a rich resource for future studies of gene regulation by enhancers and their role in driving cancerous cell growth.


Assuntos
Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica/métodos , Neoplasias/genética , Análise de Sequência de DNA/métodos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Células HCT116 , Humanos , Mutação , Especificidade de Órgãos , Análise de Sequência de RNA , Ativação Transcricional
5.
Nat Commun ; 10(1): 3138, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316066

RESUMO

Sequencing of newly synthesised RNA can monitor transcriptional dynamics with great sensitivity and high temporal resolution, but is currently restricted to populations of cells. Here, we develop new transcriptome alkylation-dependent single-cell RNA sequencing (NASC-seq), to monitor newly synthesised and pre-existing RNA simultaneously in single cells. We validate the method on pre-labelled RNA, and by demonstrating that more newly synthesised RNA was detected for genes with known high mRNA turnover. Monitoring RNA synthesis during Jurkat T-cell activation with NASC-seq reveals both rapidly up- and down-regulated genes, and that induced genes are almost exclusively detected as newly transcribed. Moreover, the newly synthesised and pre-existing transcriptomes after T-cell activation are distinct, confirming that NASC-seq simultaneously measures gene expression corresponding to two time points in single cells. Altogether, NASC-seq enables precise temporal monitoring of RNA synthesis at single-cell resolution during homoeostasis, perturbation responses and cellular differentiation.


Assuntos
Análise de Sequência de RNA/métodos , Análise de Célula Única , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Células Jurkat , Células K562 , RNA/química
6.
Nature ; 560(7719): 494-498, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089906

RESUMO

RNA abundance is a powerful indicator of the state of individual cells. Single-cell RNA sequencing can reveal RNA abundance with high quantitative accuracy, sensitivity and throughput1. However, this approach captures only a static snapshot at a point in time, posing a challenge for the analysis of time-resolved phenomena such as embryogenesis or tissue regeneration. Here we show that RNA velocity-the time derivative of the gene expression state-can be directly estimated by distinguishing between unspliced and spliced mRNAs in common single-cell RNA sequencing protocols. RNA velocity is a high-dimensional vector that predicts the future state of individual cells on a timescale of hours. We validate its accuracy in the neural crest lineage, demonstrate its use on multiple published datasets and technical platforms, reveal the branching lineage tree of the developing mouse hippocampus, and examine the kinetics of transcription in human embryonic brain. We expect RNA velocity to greatly aid the analysis of developmental lineages and cellular dynamics, particularly in humans.


Assuntos
Encéfalo/citologia , Crista Neural/metabolismo , Neurônios/citologia , Splicing de RNA/genética , RNA/análise , RNA/genética , Análise de Sequência de RNA , Análise de Célula Única , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Linhagem da Célula/genética , Células Cromafins/citologia , Células Cromafins/metabolismo , Conjuntos de Dados como Assunto , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/embriologia , Hipocampo/metabolismo , Cinética , Masculino , Camundongos , Crista Neural/citologia , Neurônios/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...