Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(7): 2921-2932, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35142499

RESUMO

The consecutive binding of two potassium ions to a bis(18-crown-6) analogue of Tröger's base (BCETB) in water was studied by isothermal titration calorimetry using four different salts, KCl, KI, KSCN, and K2SO4. A counterintuitive result was observed: the enthalpy change associated with the binding of the second ion is more negative than that of the first (ΔHbind,2° < ΔHbind,1°). This remarkable finding is supported by continuum electrostatic theory as well as by atomic scale replica exchange molecular dynamics simulations, where the latter robustly reproduces experimental trends for all simulated salts, KCl, KI, and KSCN, using multiple force fields. While an enthalpic K+-K+ attraction in water poses a small, but fundamentally important, contribution to the overall interaction, the probability of the collapsed conformation (COL) of BCETB, where both crown ether moieties (CEs) of BCETB are bent in toward the cavity, was found to increase successively upon binding of the first and second potassium ions. The promotion of the COL conformation reveals favorable intrinsic interactions between the potassium coordinated CEs, which further contribute to the observation that ΔHbind,2° < ΔHbind,1°. While the observed trend is independent of the counterion, the origin of the significantly larger magnitude of the difference ΔHbind,2° - ΔHbind,1° observed experimentally for KSCN was studied in light of the weaker hydration of the thiocyanate anion, resulting in an enrichment of thiocyanate ions close to BCETB compared to the other studied counterions.

2.
Chemistry ; 27(42): 10883-10897, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-33908678

RESUMO

A bis(18-crown-6) Tröger's base receptor and 4-substituted hepta-1,7-diyl bisammonium salt ligands have been used as a model system to study the interactions between non-polar side chains of peptides and an aromatic cavity of a protein. NMR titrations and NOESY/ROESY NMR spectroscopy were used to analyze the discrimination of the ligands by the receptor based on the substituent of the ligand, both quantitatively (free binding energies) and qualitatively (conformations). The analysis showed that an all-anti conformation of the heptane chain was preferred for most of the ligands, both free and when bound to the receptor, and that for all of the receptor-ligand complexes, the substituent was located inside or partly inside of the aromatic cavity of the receptor. We estimated the free binding energy of a methyl- and a phenyl group to an aromatic cavity, via CH-π, and combined aromatic CH-π and π-π interactions to be -1.7 and -3.3 kJ mol-1 , respectively. The experimental results were used to assess the accuracy of different computational methods, including molecular mechanics (MM) and density functional theory (DFT) methods, showing that MM was superior.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Ligantes , Espectroscopia de Ressonância Magnética , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...