Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6700): 1068-1069, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843330

RESUMO

Strategies to mitigate emissions must consider methane and nitrous oxide together.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37923397

RESUMO

The rapid pace of climate change has created great urgency for short-term mitigation strategies. Appropriately, the long-term target for intervening in global warming is CO2, but experts suggest that methane should be a key short-term target. Methane has a warming impact 34 times greater than CO2 on a 100-year timescale, and 86 times greater on a 20-year timescale, and its short half-life in the atmosphere provides the opportunity for near-term positive climate impacts. One approach to removing methane is the use of bacteria for which methane is their sole carbon and energy source (methanotrophs). Such bacteria convert methane to CO2 and biomass, a potentially value-added product and co-benefit. If air above emissions sites with elevated methane is targeted, technology harnessing the aerobic methanotrophs has the potential to become economically viable and environmentally sound. This article discusses challenges and opportunities for using aerobic methanotrophs for methane removal from air, including the avoidance of increased N2O emissions.

3.
Proc Natl Acad Sci U S A ; 120(35): e2310046120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603746

RESUMO

The rapid increase of the potent greenhouse gas methane in the atmosphere creates great urgency to develop and deploy technologies for methane mitigation. One approach to removing methane is to use bacteria for which methane is their carbon and energy source (methanotrophs). Such bacteria naturally convert methane to CO2 and biomass, a value-added product and a cobenefit of methane removal. Typically, methanotrophs grow best at around 5,000 to 10,000 ppm methane, but methane in the atmosphere is 1.9 ppm. Air above emission sites such as landfills, anaerobic digestor effluents, rice paddy effluents, and oil and gas wells contains elevated methane in the 500 ppm range. If such sites are targeted for methane removal, technology harnessing aerobic methanotroph metabolism has the potential to become economically and environmentally viable. The first step in developing such methane removal technology is to identify methanotrophs with enhanced ability to grow and consume methane at 500 ppm and lower. We report here that some existing methanotrophic strains grow well at 500 ppm methane, and one of them, Methylotuvimicrobium buryatense 5GB1C, consumes such low methane at enhanced rates compared to previously published values. Analyses of bioreactor-based performance and RNAseq-based transcriptomics suggest that this ability to utilize low methane is based at least in part on extremely low non-growth-associated maintenance energy and on high methane specific affinity. This bacterium is a candidate to develop technology for methane removal at emission sites. If appropriately scaled, such technology has the potential to slow global warming by 2050.


Assuntos
Alphaproteobacteria , Clima , Atmosfera , Biomassa , Metano
4.
Synth Biol (Oxf) ; 6(1): ysab020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34651085

RESUMO

Formate is an attractive feedstock for sustainable microbial production of fuels and chemicals, but its potential is limited by the lack of efficient assimilation pathways. The reduction of formate to formaldehyde would allow efficient downstream assimilation, but no efficient enzymes are known for this transformation. To develop a 2-step formate reduction pathway, we screened natural variants of acyl-CoA synthetase (ACS) and acylating aldehyde dehydrogenase (ACDH) for activity on one-carbon substrates and identified active and highly expressed homologs of both enzymes. We then performed directed evolution, increasing ACDH-specific activity by 2.5-fold and ACS lysate activity by 5-fold. To test for the in vivo activity of our pathway, we expressed it in a methylotroph which can natively assimilate formaldehyde. Although the enzymes were active in cell extracts, we could not detect formate assimilation into biomass, indicating that further improvement will be required for formatotrophy. Our work provides a foundation for further development of a versatile pathway for formate assimilation.

5.
ACS Synth Biol ; 10(6): 1394-1405, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33988977

RESUMO

Engineering microorganisms into biological factories that convert renewable feedstocks into valuable materials is a major goal of synthetic biology; however, for many nonmodel organisms, we do not yet have the genetic tools, such as suites of strong promoters, necessary to effectively engineer them. In this work, we developed a computational framework that can leverage standard RNA-seq data sets to identify sets of constitutive, strongly expressed genes and predict strong promoter signals within their upstream regions. The framework was applied to a diverse collection of RNA-seq data measured for the methanotroph Methylotuvimicrobium buryatense 5GB1 and identified 25 genes that were constitutively, strongly expressed across 12 experimental conditions. For each gene, the framework predicted short (27-30 nucleotide) sequences as candidate promoters and derived -35 and -10 consensus promoter motifs (TTGACA and TATAAT, respectively) for strong expression in M. buryatense. This consensus closely matches the canonical E. coli sigma-70 motif and was found to be enriched in promoter regions of the genome. A subset of promoter predictions was experimentally validated in a XylE reporter assay, including the consensus promoter, which showed high expression. The pmoC, pqqA, and ssrA promoter predictions were additionally screened in an experiment that scrambled the -35 and -10 signal sequences, confirming that transcription initiation was disrupted when these specific regions of the predicted sequence were altered. These results indicate that the computational framework can make biologically meaningful promoter predictions and identify key pieces of regulatory systems that can serve as foundational tools for engineering diverse microorganisms for biomolecule production.


Assuntos
Engenharia Metabólica/métodos , Methylococcaceae/genética , Methylococcaceae/metabolismo , Regiões Promotoras Genéticas/genética , RNA-Seq/métodos , Sequência de Bases , Biologia Computacional/métodos , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Genoma Bacteriano , RNA Bacteriano/genética , Fator sigma/genética , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética , Transcriptoma/genética
6.
Methods Enzymol ; 650: 237-259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33867024

RESUMO

Lanthanide metals are commonly used in technological devices including batteries, computers, catalysts and magnets. Despite their important properties, mining difficulties and pollution concerns limit the number of mines worldwide. Because of these concerns, biometallurgy is an attractive possibility for lanthanide extraction from recycled materials or from contaminated sites. Methylotrophs, bacteria that grow on reduced carbon substrates like methane and methanol, utilize lanthanides for a central reaction in their metabolisms. They must have some mechanism for uptake or trafficking, and are therefore excellent candidates for applying small molecules or proteins for selective lanthanide metal recycling. The haloalkaliphilic methanotroph "Methylotuvimicrobium buryatense" 5GB1C is the fastest growing methanotroph isolated to date, and thus has great industrial potential. The MxaFI enzyme complex uses calcium as a Lewis acid in conjunction with the pyroquinoline quinone cofactor to oxidize methanol, while the alternative enzyme XoxF uses lanthanide metals (e.g. lanthanum and cerium) for the same function. Lanthanide metals, abundant in the earth's crust, strongly repress the transcription of mxaF yet activate the transcription of xoxF, implying that XoxF may be the predominant methanol dehydrogenase in the bacterium's native environment. It may be that lanthanum interaction mechanisms are different from those in other microorganisms. In addition, the facile genetics in this strain and existing background information make it a good study organism for biological lanthanum uptake. The interesting physiology of this organism required empirical work to develop cultivation methods that allow robust assays of gene expression and measurement of lanthanum associated with cell biomass. In this chapter, we show that altering the metal chelator increased the availability of lanthanum to the cell as measured by the specific gene expression response. We also made further alterations to prevent lanthanum precipitation in medium for the growth of haloalkaliphiles.


Assuntos
Elementos da Série dos Lantanídeos , Methylococcaceae , Oxirredutases do Álcool/genética , Bactérias , Proteínas de Bactérias , Metano
7.
Appl Environ Microbiol ; 87(3)2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33218997

RESUMO

Methylotuvimicrobium buryatense 5GB1C, a fast-growing gammaproteobacterial methanotroph, is equipped with two glycolytic pathways, the Entner-Doudoroff (ED) pathway and the Embden-Meyerhof-Parnas (EMP) pathway. Metabolic flux analysis and 13C-labeling experiments have shown the EMP pathway is the principal glycolytic route in M. buryatense 5GB1C, while the ED pathway appears to be metabolically and energetically insignificant. However, it has not been possible to obtain a null mutant in the edd-eda genes encoding the two unique enzymatic reactions in the ED pathway, suggesting the ED pathway may be essential for M. buryatense 5GB1C growth. In this study, the inducible P BAD promoter was used to manipulate gene expression of edd-eda, and in addition, the expression of these two genes was separated from that of a downstream gltA gene. The resulting strain shows arabinose-dependent growth that correlates with ED pathway activity, with normal growth achieved in the presence of ∼0.1 g/liter arabinose. Flux balance analysis shows that M. buryatense 5GB1C with a strong ED pathway has a reduced energy budget, thereby limiting the mutant growth at a high concentration of arabinose. Collectively, our study demonstrates that the ED pathway is essential for M. buryatense 5GB1C. However, no known mechanism can directly explain the essentiality of the ED pathway, and thus, it may have a yet unknown regulatory role required for sustaining a healthy and functional metabolism in this bacterium.IMPORTANCE The gammaproteobacterial methanotrophs possess a unique central metabolic architecture where methane and other reduced C1 carbon sources are assimilated through the ribulose monophosphate cycle. Although efforts have been made to better understand methanotrophic metabolism in these bacteria via experimental and computational approaches, many questions remain unanswered. One of these is the essentiality of the ED pathway for M. buryatense 5GB1C, as current results appear contradictory. By creating a construct with edd-eda and gltA genes controlled by P BAD and P J23101 , respectively, we demonstrated the essentiality of the ED pathway for this obligate methanotroph. It is also demonstrated that these genetic tools are applicable to M. buryatense 5GB1C and that expression of the target genes can be tightly controlled across an extensive range. Our study adds to the expanding knowledge of methanotrophic metabolism and practical approaches to genetic manipulation for obligate methanotrophs.


Assuntos
Methylococcaceae/metabolismo , Glicólise , Redes e Vias Metabólicas , Methylococcaceae/genética , Mutação
8.
Nat Metab ; 2(3): 219-220, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32694776
9.
mSystems ; 4(6)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822604

RESUMO

Methanotrophic bacteria are a group of prokaryotes capable of using methane as their sole carbon and energy source. Although efforts have been made to simulate and elucidate their metabolism via computational approaches or 13C tracer analysis, major gaps still exist in our understanding of methanotrophic metabolism at the systems level. Particularly, direct measurements of system-wide fluxes are required to understand metabolic network function. Here, we quantified the central metabolic fluxes of a type I methanotroph, "Methylotuvimicrobium buryatense" 5GB1C, formerly Methylomicrobium buryatense 5GB1C, via 13C isotopically nonstationary metabolic flux analysis (INST-MFA). We performed labeling experiments on chemostat cultures by switching substrates from 12C to 13C input. Following the switch, we measured dynamic changes of labeling patterns and intracellular pool sizes of several intermediates, which were later used for data fitting and flux calculations. Through computational optimizations, we quantified methane and methanol metabolism at two growth rates (0.1 h-1 and 0.05 h-1). The resulting flux maps reveal a core consensus central metabolic flux phenotype across different growth conditions: a strong ribulose monophosphate cycle, a preference for the Embden-Meyerhof-Parnas pathway as the primary glycolytic pathway, and a tricarboxylic acid cycle showing small yet significant fluxes. This central metabolic consistency is further supported by a good linear correlation between fluxes at the two growth rates. Specific differences between methane and methanol growth observed previously are maintained under substrate limitation, albeit with smaller changes. The substrate oxidation and glycolysis pathways together contribute over 80% of total energy production, while other pathways play less important roles.IMPORTANCE Methanotrophic metabolism has been under investigation for decades using biochemical and genetic approaches. Recently, a further step has been taken toward understanding methanotrophic metabolism in a quantitative manner by means of flux balance analysis (FBA), a mathematical approach that predicts fluxes constrained by mass balance and a few experimental measurements. However, no study has previously been undertaken to experimentally quantitate the complete methanotrophic central metabolism. The significance of this study is to fill such a gap by performing 13C INST-MFA on a fast-growing methanotroph. Our quantitative insights into the methanotrophic carbon and energy metabolism will pave the way for future FBA studies and set the stage for rational design of methanotrophic strains for industrial applications. Further, the experimental strategies can be applied to other methane or methanol utilizers, and the results will offer a unique and quantitative perspective of diverse methylotrophic metabolism.

10.
J Bacteriol ; 201(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31085692

RESUMO

Several of the metabolic enzymes in methanotrophic bacteria rely on metals for both their expression and their catalysis. The MxaFI methanol dehydrogenase enzyme complex uses calcium as a cofactor to oxidize methanol, while the alternative methanol dehydrogenase XoxF uses lanthanide metals such as lanthanum and cerium for the same function. Lanthanide metals, abundant in the earth's crust, strongly repress the transcription of mxaF yet activate the transcription of xoxF This regulatory program, called the "lanthanide switch," is central to methylotrophic metabolism, but only some of its components are known. To uncover additional components of the lanthanide switch, we developed a chemical mutagenesis system in the type I gammaproteobacterial methanotroph "Methylotuvimicrobium buryatense" 5GB1C and designed a selection system for mutants unable to repress the mxaF promoter in the presence of lanthanum. Whole-genome resequencing for multiple lanthanide switch mutants identified several unique point mutations in a single gene encoding a TonB-dependent receptor, which we have named LanA. The LanA TonB-dependent receptor is absolutely required for the lanthanide switch and controls the expression of a small set of genes. While mutation of the lanA gene does not affect the amount of cell-associated lanthanum, it is essential for growth in the absence of the MxaF methanol dehydrogenase, suggesting that LanA is involved in lanthanum uptake to supply the XoxF methanol dehydrogenase with its critical metal ion cofactor. The discovery of this novel component of the lanthanide regulatory system highlights the complexity of this circuit and suggests that further components are likely involved.IMPORTANCE Lanthanide metals, or rare earth elements, are abundant in nature and used heavily in technological devices. Biological interactions with lanthanides are just beginning to be unraveled. Until very recently, microbial mechanisms of lanthanide metal interaction and uptake were unknown. The TonB-dependent receptor LanA is the first lanthanum receptor identified in a methanotroph. Sequence homology searches with known metal transporters and regulators could not be used to identify LanA or other lanthanide metal switch components, and this method for mutagenesis and selection was required to identify the receptor. This work advances the knowledge of microbe-metal interactions in environmental niches that impact atmospheric methane levels and are thus relevant to climate change.


Assuntos
Proteínas de Bactérias/genética , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Elementos da Série dos Lantanídeos/metabolismo , Metano/metabolismo , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutagênese
11.
mBio ; 10(2)2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30967465

RESUMO

Methylomicrobium buryatense 5GB1 is an obligate methylotroph which grows on methane or methanol with similar growth rates. It has long been assumed that the core metabolic pathways must be similar on the two substrates, but recent studies of methane metabolism in this bacterium suggest that growth on methanol might have significant differences from growth on methane. In this study, both a targeted metabolomics approach and a 13C tracer approach were taken to understand core carbon metabolism in M. buryatense 5GB1 during growth on methanol and to determine whether such differences occur. Our results suggest a systematic shift of active core metabolism in which increased flux occurred through both the Entner-Doudoroff (ED) pathway and the partial serine cycle, while the tricarboxylic acid (TCA) cycle was incomplete, in contrast to growth on methane. Using the experimental results as constraints, we applied flux balance analysis to determine the metabolic flux phenotype of M. buryatense 5GB1 growing on methanol, and the results are consistent with predictions based on ATP and NADH changes. Transcriptomics analysis suggested that the changes in fluxes and metabolite levels represented results of posttranscriptional regulation. The combination of flux balance analysis of the genome-scale model and the flux ratio from 13C data changed the solution space for a better prediction of cell behavior and demonstrated the significant differences in physiology between growth on methane and growth on methanol.IMPORTANCE One-carbon compounds such as methane and methanol are of increasing interest as sustainable substrates for biological production of fuels and industrial chemicals. The bacteria that carry out these conversions have been studied for many decades, but gaps exist in our knowledge of their metabolic pathways. One such gap is the difference between growth on methane and growth on methanol. Understanding such metabolism is important, since each has advantages and disadvantages as a feedstock for production of chemicals and fuels. The significance of our research is in the demonstration that the metabolic network is substantially altered in each case and in the delineation of these changes. The resulting new insights into the core metabolism of this bacterium now provide an improved basis for future strain design.


Assuntos
Regulação Bacteriana da Expressão Gênica , Metano/metabolismo , Metanol/metabolismo , Methylococcaceae/genética , Methylococcaceae/metabolismo , Isótopos de Carbono/análise , Perfilação da Expressão Gênica , Marcação por Isótopo , Análise do Fluxo Metabólico , Redes e Vias Metabólicas/genética , Metabolômica , Methylococcaceae/crescimento & desenvolvimento
12.
Appl Environ Microbiol ; 85(7)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709826

RESUMO

Multiple species of bacteria oxidize methane in the environment after it is produced by anaerobic ecosystems. These organisms provide reduced carbon substrates for species that cannot oxidize methane themselves, thereby serving a key role in these niches while also sequestering this potent greenhouse gas before it enters the atmosphere. Deciphering the molecular details of how methane-oxidizing bacteria interact in the environment enables us to understand an important aspect that shapes the structures and functions of these communities. Here we show that many members of the Methylomonas genus possess a LuxR-type acyl-homoserine lactone (acyl-HSL) receptor/transcription factor that is highly homologous to MbaR from the quorum-sensing (QS) system of Methylobacter tundripaludum, another methane oxidizer that has been isolated from the same environment. We reconstitute this detection system in Escherichia coli and use mutant and transcriptomic analysis to show that the receptor/transcription factor from Methylomonas sp. strain LW13 is active and alters LW13 gene expression in response to the acyl-HSL produced by M. tundripaludum These findings provide a molecular mechanism for how two species of bacteria that may compete for resources in the environment can interact in a specific manner through a chemical signal.IMPORTANCE Methanotrophs are bacteria that sequester methane, a significant greenhouse gas, and thereby perform an important ecosystem function. Understanding the mechanisms by which these organisms interact in the environment may ultimately allow us to manipulate and to optimize this activity. Here we show that members of a genus of methane-oxidizing bacteria can be influenced by a chemical signal produced by a possibly competing species. This provides insight into how gene expression can be controlled in these bacterial communities via an exogenous chemical signal.


Assuntos
Metano/metabolismo , Methylococcaceae/metabolismo , Microbiota/fisiologia , Transdução de Sinais , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Ecossistema , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Methylococcaceae/genética , Methylomonas/genética , Methylomonas/metabolismo , Microbiota/genética , Oxirredução , Percepção de Quorum/fisiologia , Proteínas Repressoras , Transdução de Sinais/genética , Transativadores , Fatores de Transcrição/genética , Transcriptoma
13.
J Am Chem Soc ; 140(6): 2002-2006, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29361220

RESUMO

Methane-oxidizing bacteria, aerobes that utilize methane as their sole carbon and energy source, are being increasingly studied for their environmentally significant ability to remove methane from the atmosphere. Their genomes indicate that they also have a robust and unusual secondary metabolism. Bioinformatic analysis of the Methylobacter tundripaludum genome identified biosynthetic gene clusters for several intriguing metabolites, and this report discloses the structural and genetic characterization of tundrenone, one of these metabolites. Tundrenone is a highly oxidized metabolite that incorporates both a modified bicyclic chorismate-derived fragment and a modified lipid tail bearing a ß,γ-unsaturated α-hydroxy ketone. Tundrenone has been genetically linked to its biosynthetic gene cluster, and quorum sensing activates its production. M. tundripaludum's genome and tundrenone's discovery support the idea that additional studies of methane-oxidizing bacteria will reveal new naturally occurring molecular scaffolds and the biosynthetic pathways that produce them.


Assuntos
Vias Biossintéticas , Hidroxiácidos/metabolismo , Indenos/metabolismo , Methylobacteriaceae/metabolismo , Metabolismo Secundário , Biologia Computacional , Genoma Bacteriano , Hidroxiácidos/química , Indenos/química , Metano/metabolismo , Methylobacteriaceae/genética , Família Multigênica
14.
Nat Microbiol ; 3(3): 281-286, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29335552

RESUMO

Methane (CH4) is a potent greenhouse gas that is released from fossil fuels and is also produced by microbial activity, with at least one billion tonnes of CH4 being formed and consumed by microorganisms in a single year 1 . Complex methanogenesis pathways used by archaea are the main route for bioconversion of carbon dioxide (CO2) to CH4 in nature2-4. Here, we report that wild-type iron-iron (Fe-only) nitrogenase from the bacterium Rhodopseudomonas palustris reduces CO2 simultaneously with nitrogen gas (N2) and protons to yield CH4, ammonia (NH3) and hydrogen gas (H2) in a single enzymatic step. The amount of CH4 produced by purified Fe-only nitrogenase was low compared to its other products, but CH4 production by this enzyme in R. palustris was sufficient to support the growth of an obligate CH4-utilizing Methylomonas strain when the two microorganisms were grown in co-culture, with oxygen (O2) added at intervals. Other nitrogen-fixing bacteria that we tested also formed CH4 when expressing Fe-only nitrogenase, suggesting that this is a general property of this enzyme. The genomes of 9% of diverse nitrogen-fixing microorganisms from a range of environments encode Fe-only nitrogenase. Our data suggest that active Fe-only nitrogenase, present in diverse microorganisms, contributes CH4 that could shape microbial community interactions.


Assuntos
Dióxido de Carbono/metabolismo , Ferro/metabolismo , Metano/biossíntese , Nitrogênio/metabolismo , Nitrogenase/metabolismo , Rodopseudomonas/enzimologia , Amônia/metabolismo , Hidrogênio/metabolismo , Microbiota , Prótons
15.
PeerJ ; 5: e3945, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29062611

RESUMO

The bacteria that grow on methane aerobically (methanotrophs) support populations of non-methanotrophs in the natural environment by excreting methane-derived carbon. One group of excreted compounds are short-chain organic acids, generated in highest abundance when cultures are grown under O2-starvation. We examined this O2-starvation condition in the methanotroph Methylomicrobium buryatense 5GB1. The M. buryatense 5GB1 genome contains homologs for all enzymes necessary for a fermentative metabolism, and we hypothesize that a metabolic switch to fermentation can be induced by low-O2 conditions. Under prolonged O2-starvation in a closed vial, this methanotroph increases the amount of acetate excreted about 10-fold, but the formate, lactate, and succinate excreted do not respond to this culture condition. In bioreactor cultures, the amount of each excreted product is similar across a range of growth rates and limiting substrates, including O2-limitation. A set of mutants were generated in genes predicted to be involved in generating or regulating excretion of these compounds and tested for growth defects, and changes in excretion products. The phenotypes and associated metabolic flux modeling suggested that in M. buryatense 5GB1, formate and acetate are excreted in response to redox imbalance. Our results indicate that even under O2-starvation conditions, M. buryatense 5GB1 maintains a metabolic state representing a combination of fermentation and respiration metabolism.

16.
J Bacteriol ; 199(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27994019

RESUMO

Aerobic methanotrophic bacteria use methane as their sole source of carbon and energy and serve as a major sink for the potent greenhouse gas methane in freshwater ecosystems. Dissecting the molecular details of how these organisms interact in the environment may increase our understanding of how they perform this important ecological role. Many bacterial species use quorum sensing (QS) systems to regulate gene expression in a cell density-dependent manner. We have identified a QS system in the genome of Methylobacter tundripaludum, a dominant methane oxidizer in methane enrichments of sediment from Lake Washington (Seattle, WA). We determined that M. tundripaludum produces primarily N-3-hydroxydecanoyl-l-homoserine lactone (3-OH-C10-HSL) and that its production is governed by a positive feedback loop. We then further characterized this system by determining which genes are regulated by QS in this methane oxidizer using transcriptome sequencing (RNA-seq) and discovered that this system regulates the expression of a putative nonribosomal peptide synthetase biosynthetic gene cluster. Finally, we detected an extracellular factor that is produced by M. tundripaludum in a QS-dependent manner. These results identify and characterize a mode of cellular communication in an aerobic methane-oxidizing bacterium.IMPORTANCE Aerobic methanotrophs are critical for sequestering carbon from the potent greenhouse gas methane in the environment, yet the mechanistic details of chemical interactions in methane-oxidizing bacterial communities are not well understood. Understanding these interactions is important in order to maintain, and potentially optimize, the functional potential of the bacteria that perform this vital ecosystem function. In this work, we identify a quorum sensing system in the aerobic methanotroph Methylobacter tundripaludum and use both chemical and genetic methods to characterize this system at the molecular level.


Assuntos
Metano/metabolismo , Methylococcaceae/fisiologia , Percepção de Quorum/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Cinética , Oxirredução , Transdução de Sinais
17.
Proc Natl Acad Sci U S A ; 114(2): 358-363, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28028242

RESUMO

The utilization of methane, a potent greenhouse gas, is an important component of local and global carbon cycles that is characterized by tight linkages between methane-utilizing (methanotrophic) and nonmethanotrophic bacteria. It has been suggested that the methanotroph sustains these nonmethanotrophs by cross-feeding, because subsequent products of the methane oxidation pathway, such as methanol, represent alternative carbon sources. We established cocultures in a microcosm model system to determine the mechanism and substrate that underlay the observed cross-feeding in the environment. Lanthanum, a rare earth element, was applied because of its increasing importance in methylotrophy. We used co-occurring strains isolated from Lake Washington sediment that are involved in methane utilization: a methanotroph and two nonmethanotrophic methylotrophs. Gene-expression profiles and mutant analyses suggest that methanol is the dominant carbon and energy source the methanotroph provides to support growth of the nonmethanotrophs. However, in the presence of the nonmethanotroph, gene expression of the dominant methanol dehydrogenase (MDH) shifts from the lanthanide-dependent MDH (XoxF)-type, to the calcium-dependent MDH (MxaF)-type. Correspondingly, methanol is released into the medium only when the methanotroph expresses the MxaF-type MDH. These results suggest a cross-feeding mechanism in which the nonmethanotrophic partner induces a change in expression of methanotroph MDHs, resulting in release of methanol for its growth. This partner-induced change in gene expression that benefits the partner is a paradigm for microbial interactions that cannot be observed in studies of pure cultures, underscoring the importance of synthetic microbial community approaches to understand environmental microbiomes.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Elementos da Série dos Lantanídeos/farmacologia , Metano/metabolismo , Interações Microbianas/efeitos dos fármacos , Oxirredutases do Álcool/metabolismo , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Metanol/metabolismo , Oxirredução/efeitos dos fármacos , Washington
18.
PeerJ ; 4: e2435, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27651996

RESUMO

Many methylotrophs, microorganisms that consume carbon compounds lacking carbon-carbon bonds, use two different systems to oxidize methanol for energy production and biomass accumulation. The MxaFI methanol dehydrogenase (MDH) contains calcium in its active site, while the XoxF enzyme contains a lanthanide in its active site. The genes encoding the MDH enzymes are differentially regulated by the presence of lanthanides. In this study, we found that the histidine kinase MxaY controls the lanthanide-mediated switch in Methylomicrobium buryatense 5GB1C. MxaY controls the transcription of genes encoding MxaFI and XoxF at least partially by controlling the transcript levels of the orphan response regulator MxaB. We identify a constitutively active version of MxaY, and identify the mutated residue that may be involved in lanthanide sensing. Lastly, we find evidence to suggest that tight control of active MDH production is required for wild-type growth rates.

19.
BMC Microbiol ; 16(1): 156, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27435978

RESUMO

BACKGROUND: Two variants of Methylobacterium extorquens AM1 demonstrated a trade-off between growth rate and biomass yield. In addition, growth rate and biomass yield were also affected by supplementation of growth medium with different amounts of cobalt. The metabolism changes relating to these growth phenomena as well as the trade-off were investigated in this study. (13)C metabolic flux analysis was used to generate a detailed central carbon metabolic flux map with both absolute and normalized flux values. RESULTS: The major differences between the two variants occurred at the formate node as well as within C3-C4 inter-conversion pathways. Higher relative fluxes through formyltetrahydrofolate ligase, phosphoenolpyruvate carboxylase, and malic enzyme led to higher biomass yield, while higher relative fluxes through pyruvate kinase and pyruvate dehydrogenase led to higher growth rate. These results were then tested by phenotypic studies on three mutants (null pyk, null pck mutant and null dme mutant) in both variants, which agreed with the model prediction. CONCLUSIONS: In this study, (13)C metabolic flux analysis for two strain variants of M. extorquens AM1 successfully identified metabolic pathways contributing to the trade-off between cell growth and biomass yield. Phenotypic analysis of mutants deficient in corresponding genes supported the conclusion that C3-C4 inter-conversion strategies were the major response to the trade-off.


Assuntos
Biomassa , Methylobacterium extorquens/crescimento & desenvolvimento , Methylobacterium extorquens/metabolismo , Dióxido de Carbono/metabolismo , Cobalto/metabolismo , Formiatos/metabolismo , Genes Bacterianos , Ligases/metabolismo , Malatos/metabolismo , Análise do Fluxo Metabólico , Metanol/metabolismo , Methylobacterium extorquens/enzimologia , Methylobacterium extorquens/genética , Mutação , Oxirredução , Fenótipo , Fosfoenolpiruvato Carboxilase/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Piruvato Quinase/metabolismo
20.
Biotechnol Biofuels ; 9: 84, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27069508

RESUMO

BACKGROUND: The toxicity of alcohols is one of the major roadblocks of biological fermentation for biofuels production. Methylobacterium extorquens AM1, a facultative methylotrophic α-proteobacterium, has been engineered to generate 1-butanol from cheap carbon feedstocks through a synthetic metabolic pathway. However, M. extorquens AM1 is vulnerable to solvent stress, which impedes further development for 1-butanol production. Only a few studies have reported the general stress response of M. extorquens AM1 to solvent stress. Therefore, it is highly desirable to obtain a strain with ameliorated 1-butanol tolerance and elucidate the molecular mechanism of 1-butnaol tolerance in M. extorquens AM1 for future strain improvement. RESULTS: In this work, adaptive laboratory evolution was used as a tool to isolate mutants with 1-butanol tolerance up to 0.5 %. The evolved strains, BHBT3 and BHBT5, demonstrated increased growth rates and higher survival rates with the existence of 1-butanol. Whole genome sequencing revealed a SNP mutation at kefB in BHBT5, which was confirmed to be responsible for increasing 1-butanol tolerance through an allelic exchange experiment. Global metabolomic analysis further discovered that the pools of multiple key metabolites, including fatty acids, amino acids, and disaccharides, were increased in BHBT5 in response to 1-butanol stress. Additionally, the carotenoid synthesis pathway was significantly down-regulated in BHBT5. CONCLUSIONS: We successfully screened mutants resistant to 1-butanol and provided insights into the molecular mechanism of 1-butanol tolerance in M. extorquens AM1. This research will be useful for uncovering the mechanism of cellular response of M. extorquens AM1 to solvent stress, and will provide the genetic blueprint for the rational design of a strain of M. extorquens AM1 with increased 1-butanol tolerance in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...