Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 2(8): 486-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18654345

RESUMO

Nanocrystals are under active investigation because of their interesting size-dependent properties and potential applications. Silicon nanocrystals have been studied for possible uses in optoelectronics, and may be relevant to the understanding of natural processes such as lightning strikes. Gas-phase methods can be used to prepare nanocrystals, and mass spectrometric techniques have been used to analyse Au and CdSe clusters. However, it is difficult to study nanocrystals by such methods unless they are synthesized in the gas phase. In particular, pre-prepared nanocrystals are generally difficult to sublime without decomposition. Here we report the observation that films of alkyl-capped silicon nanocrystals evaporate upon heating in ultrahigh vacuum at 200 degrees C, and the vapour of intact nanocrystals can be collected on a variety of solid substrates. This effect may be useful for the controlled preparation of new quantum-confined silicon structures and could facilitate their mass spectroscopic study and size-selection.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Silício/química , Alquilação , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície , Vácuo
3.
J Phys Chem B ; 109(24): 12020-31, 2005 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-16852483

RESUMO

The mechanism of the formation of Si-C bonded monolayers on silicon by reaction of 1-alkenes with hydrogen-terminated porous silicon surfaces has been studied by both experimental and computational means. We propose that monolayer formation occurs via the same radical chain process as at single-crystal surfaces: a silyl radical attacks the 1-alkene to form both the Si-C bond and a radical center on the beta-carbon atom. This carbon radical may then abstract a hydrogen atom from a neighboring Si-H bond to propagate the chain. Highly deuterated porous silicon and FTIR spectroscopy were used to provide evidence for this mechanism by identifying the IR bands associated with the C-D bond formed in the proposed propagation step. Deuterated porous silicon surfaces formed by galvanostatic etching in 48% DF/D2O:EtOD (1:1) electrolytes showed a 30% greater density of Si-D sites on the surface than Si-H sites on hydrogen-terminated porous silicon surfaces prepared in the equivalent H-electrolyte. The thermal reaction of undec-1-ene and the Lewis acid catalyzed reaction of styrene on a deuterated surface both resulted in alkylated surfaces with the same C-C and C-H vibrational features as formed in the corresponding reactions at a hydrogen-terminated surface. However, a broad band around 2100 cm(-1) was observed upon alkylating the deuterated surfaces. Ab initio and density functional theory calculations on small molecule models showed that the integrated absorbance of this band was comparable to the intensity expected for the C-D stretches predicted by the chain mechanism. The calculations also indicate that there is substantial interaction between the hydrogen atoms on the beta-carbons and the hydrogen atoms on the Si(111)-H surface. These broad 2100 cm(-1) features are therefore assigned to C-D bands arising from the involvement of surface D atoms in the hydrosilylation reactions, while the line broadening can be explained partly by interaction with neighboring surface atoms/groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...