Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Control Hosp Epidemiol ; 45(3): 367-373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37877197

RESUMO

OBJECTIVE: To determine the effectiveness of active, upper-room, germicidal ultraviolet (GUV) devices in reducing bacterial contamination in patient rooms in air and on surfaces as a supplement to the central heating, ventilation, and air conditioning (HVAC) air handling unit (AHU) with MERV 14 filters and UV-C disinfection. METHODS: This study was conducted in an academic medical center, burn intensive care unit (BICU), for 4 months in 2022. Room occupancy was monitored and recorded. In total, 402 preinstallation and postinstallation bacterial air and non-high-touch surface samples were obtained from 10 BICU patient rooms. Airborne particle counts were measured in the rooms, and bacterial air samples were obtained from the patient-room supply air vents and outdoor air, before and after the intervention. After preintervention samples were obtained, an active, upper-room, GUV air disinfection system was deployed in each of the patient rooms in the BICU. RESULTS: The average levels of airborne bacteria of 395 CFU/m3 before GUV device installation and 37 CFU/m3 after installation indicated an 89% overall decrease (P < .0001). Levels of surface-borne bacteria were associated with a 69% decrease (P < .0001) after GUV device installation. Outdoor levels of airborne bacteria averaged 341 CFU/m3 in March before installation and 676 CFU/m3 in June after installation, but this increase was not significant (P = .517). CONCLUSIONS: Significant reductions in air and surface contamination occurred in all rooms and areas and were not associated with variations in outdoor air concentrations of bacteria. The significant decrease of surface bacteria is an unexpected benefit associated with in-room GUV air disinfection, which can potentially reduce overall bioburden.


Assuntos
Bactérias , Desinfecção , Humanos , Unidades de Terapia Intensiva , Quartos de Pacientes , Ar Condicionado , Raios Ultravioleta , Microbiologia do Ar
2.
PLoS One ; 14(7): e0215262, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31339887

RESUMO

Oral and fecal microbial biomarkers have previously been associated with cardiometabolic (CM) risk, however, no comprehensive attempt has been made to explore this association in minority populations or across different geographic regions. We characterized gut- and oral-associated microbiota and CM risk in 655 participants of African-origin, aged 25-45, from Ghana, South Africa, Jamaica, and the United States (US). CM risk was classified using the CM risk cut-points for elevated waist circumference, elevated blood pressure and elevated fasted blood glucose, low high-density lipoprotein (HDL), and elevated triglycerides. Gut-associated bacterial alpha diversity negatively correlated with elevated blood pressure and elevated fasted blood glucose. Similarly, gut bacterial beta diversity was also significantly differentiated by waist circumference, blood pressure, triglyceridemia and HDL-cholesterolemia. Notably, differences in inter- and intra-personal gut microbial diversity were geographic-region specific. Participants meeting the cut-points for 3 out of the 5 CM risk factors were significantly more enriched with Lachnospiraceae, and were significantly depleted of Clostridiaceae, Peptostreptococcaceae, and Prevotella. The predicted relative proportions of the genes involved in the pathways for lipopolysaccharides (LPS) and butyrate synthesis were also significantly differentiated by the CM risk phenotype, whereby genes involved in the butyrate synthesis via lysine, glutarate and 4-aminobutyrate/succinate pathways and LPS synthesis pathway were enriched in participants with greater CM risk. Furthermore, inter-individual oral microbiota diversity was also significantly associated with the CM risk factors, and oral-associated Streptococcus, Prevotella, and Veillonella were enriched in participants with 3 out of the 5 CM risk factors. We demonstrate that in a diverse cohort of African-origin adults, CM risk is significantly associated with reduced microbial diversity, and the enrichment of specific bacterial taxa and predicted functional traits in both gut and oral environments. As well as providing new insights into the associations between the gut and oral microbiota and CM risk, this study also highlights the potential for novel therapeutic discoveries which target the oral and gut microbiota in CM risk.


Assuntos
Doenças Cardiovasculares/microbiologia , Microbioma Gastrointestinal , Doenças Metabólicas/microbiologia , Boca/microbiologia , Adulto , Doenças Cardiovasculares/epidemiologia , Feminino , Gana/epidemiologia , Humanos , Jamaica/epidemiologia , Masculino , Doenças Metabólicas/epidemiologia , Pessoa de Meia-Idade , Fatores de Risco , África do Sul/epidemiologia , Estados Unidos/epidemiologia , Circunferência da Cintura
3.
BMC Public Health ; 18(1): 978, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30081857

RESUMO

BACKGROUND: While some of the variance observed in adiposity and weight change within populations can be accounted for by traditional risk factors, a new factor, the gut microbiota, has recently been associated with obesity. However, the causal mechanisms through which the gut microbiota and its metabolites, short chain fatty acids (SCFAs) influence obesity are unknown, as are the individual obesogenic effects of the individual SCFAs (butyrate, acetate and propionate). This study, METS-Microbiome, proposes to examine the influence of novel risk factors, the gut microbiota and SCFAs, on obesity, adiposity and weight change in an international established cohort spanning the epidemiologic transition. METHODS: The parent study; Modeling the Epidemiologic Transition Study (METS) is a well-established and ongoing prospective cohort study designed to assess the association between body composition, physical activity, and relative weight, weight gain and cardiometabolic disease risk in five diverse population-based samples in 2500 people of African descent. The cohort has been prospectively followed since 2009. Annual measures of obesity risk factors, including body composition, objectively measured physical activity and dietary intake, components which vary across the spectrum of social and economic development. In our new study; METS-Microbiome, in addition to continuing yearly measures of obesity risk, we will also measure gut microbiota and stool SCFAs in all contactable participants, and follow participants for a further 3 years, thus providing one of the largest gut microbiota population-based studies to date. DISCUSSION: This new study capitalizes upon an existing, extensively well described cohort of adults of African-origin, with significant variability as a result of the widespread geographic distributions, and therefore variation in the environmental covariate exposures. The METS-Microbiome study will substantially advance the understanding of the role gut microbiota and SCFAs play in the development of obesity and provide novel obesity therapeutic targets targeting SCFAs producing features of the gut microbiota. TRIAL REGISTRATION: Registered NCT03378765 Date first posted: December 20, 2017.


Assuntos
Adiposidade , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Obesidade/etiologia , Aumento de Peso , Adulto , África , Peso Corporal , Meio Ambiente , Estudos Epidemiológicos , Fezes , Feminino , Humanos , Masculino , Microbiota , Obesidade/epidemiologia , Obesidade/metabolismo , Obesidade/microbiologia , Estudos Prospectivos , Projetos de Pesquisa , Fatores de Risco
4.
Nutrients ; 10(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772682

RESUMO

The greatest burden of cardiovascular disease is now carried by developing countries with cardiometabolic conditions such as metabolic syndrome, obesity and inflammation believed to be the driving force behind this epidemic. Dietary fiber is known to have protective effects against obesity, type 2 diabetes, cardiovascular disease and the metabolic syndrome. Considering the emerging prevalence of these cardiometabolic disease states across the epidemiologic transition, the objective of this study is to explore these associations of dietary fiber with cardiometabolic risk factors in four countries across the epidemiologic transition. We examined population-based samples of men and women, aged 25⁻45 of African origin from Ghana, Jamaica, the Seychelles and the USA. Ghanaians had the lowest prevalence of obesity (10%), while Jamaicans had the lowest prevalence of metabolic syndrome (5%) across all the sites. Participants from the US presented with the highest prevalence of obesity (52%), and metabolic syndrome (22%). Overall, the Ghanaians consumed the highest dietary fiber (24.9 ± 9.7 g), followed by Jamaica (16.0 ± 8.3 g), the Seychelles (13.6 ± 7.2 g) and the lowest in the USA (14.2 ± 7.1 g). Consequently, 43% of Ghanaians met the fiber dietary guidelines (14 g/1000 kcal/day), 9% of Jamaicans, 6% of Seychellois, and only 3% of US adults. Across all sites, cardiometabolic risk (metabolic syndrome, inflammation and obesity) was inversely associated with dietary fiber intake, such that the prevalence of metabolic syndrome was 13% for those in the lowest quartile of fiber intake, compared to 9% those in the highest quartile of fiber intake. Notably, twice as many of participants (38%) in the lowest quartile were obese compared to those in the highest quartile of fiber intake (18%). These findings further support the need to incorporate strategies and policies to promote increased dietary fiber intake as one component for the prevention of cardiometabolic risk in all countries spanning the epidemiologic transition.


Assuntos
Doenças Cardiovasculares/epidemiologia , Fibras na Dieta/administração & dosagem , Síndrome Metabólica/epidemiologia , Obesidade/epidemiologia , Adulto , Diabetes Mellitus Tipo 2/epidemiologia , Exercício Físico , Feminino , Gana/epidemiologia , Humanos , Inflamação/epidemiologia , Jamaica/epidemiologia , Masculino , Pessoa de Meia-Idade , Razão de Chances , Fatores de Risco , Seicheles/epidemiologia , Estados Unidos/epidemiologia
5.
J Bacteriol ; 200(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29463601

RESUMO

Vibrio fischeri uses biofilm formation to promote symbiotic colonization of its squid host, Euprymna scolopes Control over biofilm formation is exerted at the level of transcription of the symbiosis polysaccharide (syp) locus by a complex set of two-component regulators. Biofilm formation can be induced by overproduction of the sensor kinase RscS, which requires the activities of the hybrid sensor kinase SypF and the response regulator SypG and is negatively regulated by the sensor kinase BinK. Here, we identify calcium as a signal that promotes biofilm formation by biofilm-competent strains under conditions in which biofilms are not typically observed (growth with shaking). This was true for RscS-overproducing cells as well as for strains in which only the negative regulator binK was deleted. The latter results provided, for the first time, an opportunity to induce and evaluate biofilm formation without regulator overexpression. Using these conditions, we determined that calcium induces both syp-dependent and bacterial cellulose synthesis (bcs)-dependent biofilms at the level of transcription of these loci. The calcium-induced biofilms were dependent on SypF, but SypF's Hpt domain was sufficient for biofilm formation. These data suggested the involvement of another sensor kinase(s) and led to the discovery that both RscS and a previously uncharacterized sensor kinase, HahK, functioned in this pathway. Together, the data presented here reveal both a new signal and biofilm phenotype produced by V. fischeri cells, the coordinate production of two polysaccharides involved in distinct biofilm behaviors, and a new regulator that contributes to control over these processes.IMPORTANCE Biofilms, or communities of surface-attached microorganisms adherent via a matrix that typically includes polysaccharides, are highly resistant to environmental stresses and are thus problematic in the clinic and important to study. Vibrio fischeri forms biofilms to colonize its symbiotic host, making this organism useful for studying biofilms. Biofilm formation depends on the syp polysaccharide locus and its regulators. Here, we identify a signal, calcium, that induces both SYP-PS and cellulose-dependent biofilms. We also identify a new syp regulator, the sensor kinase HahK, and discover a mutant phenotype for the sensor kinase RscS. This work thus reveals a specific biofilm-inducing signal that coordinately controls two polysaccharides, identifies a new regulator, and clarifies the regulatory control over biofilm formation by V. fischeri.


Assuntos
Aliivibrio fischeri/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Cálcio/farmacologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Aliivibrio fischeri/efeitos dos fármacos , Proteínas de Bactérias/genética , Técnicas Bacteriológicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...