Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0302159, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713665

RESUMO

BACKGROUND: Stroke volume can be estimated beat-to-beat and non-invasively by pulse wave analysis (PWA). However, its reliability has been questioned during marked alterations in systemic vascular resistance (SVR). We studied the effect of SVR on the agreement between stroke volume by PWA and Doppler ultrasound during reductions in stroke volume in healthy volunteers. METHODS: In a previous study we simultaneously measured stroke volume by PWA (SVPWA) and suprasternal Doppler ultrasound (SVUS). We exposed 16 healthy volunteers to lower body negative pressure (LBNP) to reduce stroke volume in combination with isometric hand grip to elevate SVR. LBNP was increased by 20 mmHg every 6 minutes from 0 to 80 mmHg, or until hemodynamic decompensation. The agreement between SVPWA and SVUS was examined using Bland-Altman analysis with mixed regression. Within-subject limits of agreement (LOA) was calculated from the residual standard deviation. SVRUS was calculated from SVUS. We allowed for a sloped bias line by introducing the mean of the methods and SVRUS as explanatory variables to examine whether the agreement was dependent on the magnitude of stroke volume and SVRUS. RESULTS: Bias ± limits of agreement (LOA) was 27.0 ± 30.1 mL. The within-subject LOA was ±11.1 mL. The within-subject percentage error was 14.6%. The difference between methods decreased with higher means of the methods (-0.15 mL/mL, confidence interval (CI): -0.19 to -0.11, P<0.001). The difference between methods increased with higher SVRUS (0.60 mL/mmHg × min × L-1, 95% CI: 0.48 to 0.72, P<0.001). CONCLUSION: PWA overestimated stroke volume compared to Doppler ultrasound during reductions in stroke volume and elevated SVR in healthy volunteers. The agreement between SVPWA and SVUS decreased during increases in SVR. This is relevant in settings where a high level of reliability is required.


Assuntos
Voluntários Saudáveis , Análise de Onda de Pulso , Volume Sistólico , Ultrassonografia Doppler , Resistência Vascular , Humanos , Masculino , Resistência Vascular/fisiologia , Adulto , Feminino , Ultrassonografia Doppler/métodos , Volume Sistólico/fisiologia , Análise de Onda de Pulso/métodos , Adulto Jovem , Pressão Negativa da Região Corporal Inferior , Força da Mão/fisiologia , Reprodutibilidade dos Testes
2.
Intensive Care Med Exp ; 11(1): 76, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947905

RESUMO

BACKGROUND: Trauma patients frequently receive supplemental oxygen, but its hemodynamic effects in blood loss are poorly understood. We studied the effects of oxygen on the hemodynamic response and tolerance to simulated blood loss in healthy volunteers. METHODS: Fifteen healthy volunteers were exposed to simulated blood loss by lower body negative pressure (LBNP) on two separate visits at least 24 h apart. They were randomized to inhale 100% oxygen or medical air on visit 1, while inhaling the other on visit 2. To simulate progressive blood loss LBNP was increased every 3 min in levels of 10 mmHg from 0 to 80 mmHg or until hemodynamic decompensation. Oxygen and air were delivered on a reservoired face mask at 15 L/min. The effect of oxygen compared to air on the changes in cardiac output, stroke volume and middle cerebral artery blood velocity (MCAV) was examined with mixed regression to account for repeated measurements within subjects. The effect of oxygen compared to air on the tolerance to blood loss was measured as the time to hemodynamic decompensation in a shared frailty model. Cardiac output was the primary outcome variable. RESULTS: Oxygen had no statistically significant effect on the changes in cardiac output (0.031 L/min/LBNP level, 95% confidence interval (CI): - 0.015 to 0.077, P = 0.188), stroke volume (0.39 mL/LBNP level, 95% CI: - 0.39 to 1.2, P = 0.383), or MCAV (0.25 cm/s/LBNP level, 95% CI: - 0.11 to 0.61, P = 0.176). Four subjects exhibited hemodynamic decompensation when inhaling oxygen compared to 10 when inhaling air (proportional hazard ratio 0.24, 95% CI: 0.065 to 0.85, P = 0.027). CONCLUSIONS: We found no effect of oxygen compared to air on the changes in cardiac output, stroke volume or MCAV during simulated blood loss in healthy volunteers. However, oxygen had a favorable effect on the tolerance to simulated blood loss with fewer hemodynamic decompensations. Our findings suggest that supplemental oxygen does not adversely affect the hemodynamic response to simulated blood loss. Trial registration This trial was registered in ClinicalTrials.gov (NCT05150418) December 9, 2021.

3.
Eur J Appl Physiol ; 121(8): 2207-2217, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33890157

RESUMO

PURPOSE: Cerebral blood flow (CBF) needs to be precisely controlled to maintain brain functions. While previously believed to be autoregulated and near constant over a wide blood pressure range, CBF is now understood as more pressure passive. However, there are still questions regarding the integrated nature of CBF regulation and more specifically the role of cardiac output. Our aim was, therefore, to explore the effects of MAP and cardiac output on CBF in a combined model of reduced preload and increased afterload. METHOD: 16 healthy volunteers were exposed to combinations of different levels of simultaneous lower body negative pressure and isometric hand grip. We measured blood velocity in the middle cerebral artery (MCAV) and internal carotid artery (ICAV) by Doppler ultrasound, and cerebral oxygen saturation (ScO2) by near-infrared spectroscopy, as surrogates for CBF. The effect of changes in MAP and cardiac output on CBF was estimated with mixed multiple regression. RESULT: Both MAP and cardiac output had independent effects on MCAV, ICAV and ScO2. For ICAV and ScO2 there was also a statistically significant interaction effect between MAP and cardiac output. The estimated effect of a change of 10 mmHg in MAP on MCAV was 3.11 cm/s (95% CI 2.51-3.71, P < 0.001), and the effect of a change of 1 L/min in cardiac output was 3.41 cm/s (95% CI 2.82-4.00, P < 0.001). CONCLUSION: The present study indicates that during reductions in cardiac output, both MAP and cardiac output have independent effects on CBF.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Débito Cardíaco/fisiologia , Circulação Cerebrovascular/fisiologia , Adulto , Feminino , Força da Mão/fisiologia , Voluntários Saudáveis , Humanos , Masculino , Espectroscopia de Luz Próxima ao Infravermelho , Ultrassonografia Doppler
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...