Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Inorg Chem ; 60(12): 8861-8869, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34105945

RESUMO

Following the concept of isoreticular chemistry, we carried out a systematic study on Ga-containing metal-organic frameworks (MOFs) using six V-shaped linker molecules of differing sizes, geometries, and additional functional groups. The linkers included three isophthalic acid derivatives (m-H2BDC-R, R = CH3, OCH3, NHCOCH3), thiophene-2,5-dicarboxylic acid (H2TDC), and two 4,4'-sulfonyldibenzoic acid derivatives (H2SDBA, DPSTA). The crystal structures of seven compounds were elucidated by a combination of model building, single-crystal X-ray diffraction (SCXRD), three-dimensional electron diffraction (3D ED), and Rietveld refinements against powder X-ray diffraction (PXRD) data. Four new Ga-MOFs that are isoreticular with their aluminum counterparts, i.e. Ga-CAU-10-R (Ga(OH)(m-BDC-R); R = OCH3, NHCOCH3), Ga-CAU-11 (Ga(OH)(SDBA)), and Ga-CAU-11-COOH (Ga(OH)(H2DPSTC)), were obtained. For the first time large single crystals of a MOF crystallizing in the CAU-10 structure type could be isolated, i.e. Ga-CAU-10-OCH3, which permitted a detailed structural characterization. In addition, the use of 5-methylisophthalic acid and thiophene-2,5-dicarboxylic acid resulted in two new Ga-MOFs denoted Ga-CAU-49 and Ga-CAU-51, respectively, which are not isostructural with any known Al-MOF. The crystal structure of Ga-CAU-49 ([Ga4(m-HBDC-CH3)2(m-BDC-CH3)3(OH)4(H2O)]) contains an unprecedented rod-shaped inorganic building unit (IBU) of the formula ∞1{Ga16(OH)18O60}, composed of corner-sharing GaO5 and GaO6 polyhedra. In Ga-CAU-51 ([Ga(OH)(C5H2O2S)]) chains of alternating cis and trans corner-sharing GaO6 polyhedra form the IBU. A detailed characterization of the title compounds was carried out, including nitrogen gas and water vapor sorption measurements. Ga-CAU-11 was the only compound exhibiting porosity toward nitrogen with a type I isotherm, a specific surface area of aS,BET = 210 m2/g, and a micropore volume of Vmic = 0.09 cm3/g. The new MOF Ga-CAU-51 exhibits exceptional water sorption properties with a reversible S-shaped isotherm and a high uptake around p/p0 = 0.38 of mads = 370 mg/g.

2.
Chem Commun (Camb) ; 56(67): 9628-9631, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32696768

RESUMO

A Fe-MOF was obtained from aqueous solution in high yield under reflux. The water sorption properties were studied by powder X-ray diffraction, volumetric and gravimetric sorption experiments and molecular simulations. The subsequent filling of hydrophobic and hydrophilic pores as well as the stability of the material are demonstrated.

3.
Dalton Trans ; 47(1): 215-223, 2018 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-29200226

RESUMO

A new Al-based layered MOF [Al2(OH)4(O2C-C3H4-CO2)]·nH2O denoted as CAU-15-Cit was synthesised under mild aqueous conditions. It exhibits a layered structure incorporating infinite chains of edge-sharing AlO6 polyhedra being interconnected by citraconate anions to arrange into layers, which are stacked in an AAA fashion (citraconic acid = methylmaleic acid = H2Cit, HO2C-C3H4-CO2H). The crystal structures of the hydrated and dehydrated MOF were determined ab initio from powder X-ray diffraction (PXRD) data. The hydrated form of this compound (n≈ 3) crystallises in the space group C2/c (a = 7.4074(8), b = 23.006(3), c = 7.0890(4) Å, ß = 85.024(7)°) and is converted to a triclinic anhydrous form (n = 0) upon dehydration (a = 7.0010(3), b = 7.5062(8), c = 9.2212(8) Å, α = 72.143(7), ß = 88.617(9), γ = 85.242(8)°, space group P1[combining macron]) in which the layers are interdigitated with a decreased interlayer distance. Physisorption measurements of the anhydrous form indicated no porosity towards nitrogen but an uptake of water vapour was measured showing a sigmoidal adsorption curve and a capacity of ≈24 wt%. This is in good agreement with the theoretical capacity for complete intercalation (≈25 wt%). Based on the temperature dependent PXRD data of the hydrated form, the intercalated water is removed at around 100 °C and the framework decomposes above 350 °C. The dehydration process was further compared to the behaviour of the structurally related aromatic variant of the MOF based on phthalic acid, denoted as CAU-15 [Al2(OH)4(O2C-C6H4-CO2)]·nH2O. The crystallisation of CAU-15-Cit was investigated by means of in situ PXRD measurements during the synthesis using synchrotron radiation at temperatures between 90 and 130 °C. Evaluation of the kinetics using the Sharp-Hancock method clearly indicated different kinetic regimes for the reactions, regardless of the synthesis temperature. At lower temperatures the rate limiting step during the initial period is nucleation, while this initial reaction stage is kinetically limited by diffusion at higher temperatures. The second reaction stage at all temperatures is approximately of the first order.

4.
Dalton Trans ; 45(10): 4179-86, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26498663

RESUMO

The new aluminium based metal-organic framework [Al(OH)(O2C-C4H8-CO2)]·H2O denoted as Al-MIL-53-ADP-lp (lp stands for large pore) was synthesised under solvothermal conditions. This solid is an analogue of the archetypical aluminium terephthalate Al-MIL-53 based on the aliphatic single-chain linker molecule adipic acid (H2ADP, hexanedioic acid). In contrast to its aromatic counterparts, Al-MIL-53-ADP exhibits a structural breathing behaviour solely upon dehydration/rehydration. The crystal structure of the anhydrous compound denoted as Al-MIL-53-ADP-np (np stands for narrow pore) was determined by a combination of forcefield-based computations and Rietveld refinement of the powder X-ray diffraction data while the structure of the hydrated form Al-MIL-53-ADP-lp was derived computationally by a combination of force field based methods and Density Functional Theory calculations. Both structures were further supported by (1)H, (13)C and (27)Al high-resolution NMR MAS 1D data coupled again with simulations. Al-MIL-53-ADP was further characterised by means of vibrational spectroscopy, elemental analysis, thermogravimetry and water vapour sorption.

5.
Chem Commun (Camb) ; 51(63): 12578-81, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26154160

RESUMO

A series of nine Ce(iv)-based metal organic frameworks with the UiO-66 structure containing linker molecules of different sizes and functionalities were obtained under mild synthesis conditions and short reaction times. Thermal and chemical stabilities were determined and a Ce-UiO-66-BDC/TEMPO system was successfully employed for the aerobic oxidation of benzyl alcohol.

6.
Inorg Chem ; 53(9): 4610-20, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24720876

RESUMO

The Al-MOF CAU-13 ([Al(OH)(trans-CDC)]; trans-H2CDC = trans-1,4-cyclohexanedicarboxylic acid) is structurally related to the MIL-53 compounds that are well-known for their "breathing" behavior, i.e., the framework flexibility upon external stimuli such as the presence of adsorbate molecules. The adsorption properties of CAU-13 were investigated in detail. The sorption isotherms of N2, H2, CH4, CO, CO2, and water were recorded, and the adsorption enthalpies for the gases were determined by microcalorimetry. The structural changes upon adsorption of CO2 were followed with in situ synchrotron powder X-ray diffraction (PXRD). The patterns were analyzed by parametric unit cell refinement, and the preferential arrangement of the CO2 molecules was modeled by density functional theory calculations. The adsorption and separation of mixtures of o-, m-, and p-xylene from mesitylene showed a preferred adsorption of o-xylene. The structures of o/m/p-xylene-loaded CAU-13 were determined from PXRD data. The adsorption of xylene isomers induces a larger pore opening than that in the thermal activation of CAU-13. In the crystal structure of the activated sample CAU-13(empty pore), half of the linkers adopt the a,a confirmation and the other half the e,e conformation, and the presence of a,a-CDC(2-) ions hampers the structural flexibility of CAU-13. However, after the adsorption of xylene, all linkers are present in the e,e conformation, allowing for a wider pore opening by this new type of "breathing".


Assuntos
Alumínio/química , Adsorção , Dióxido de Carbono/química , Conformação Molecular , Difração de Pó , Termodinâmica , Xilenos/química
7.
Dalton Trans ; 42(24): 8761-70, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23640207

RESUMO

A systematic study was carried out to investigate the influence of linker geometry, metal ionic radius as well as the nature of the counter ions on the structure formation of metal tetraphosphonates. Two tetraphosphonic acids p- and m-(H2O3PCH2)2N-CH2-C6H4-CH2-N(CH2PO3H2)2, six metal ions (Ca(2+), Mn(2+), Co(2+), Ni(2+), Zn(2+), and Cd(2+)) and two different counter ions (Cl(-) and NO3(-)) were employed using high throughput methods. Microwave (MW)-assisted heating led to the discovery of ten new metal-phosphonates which crystallize in three different crystal structures. The combination of direct methods and force field calculations allowed us to establish the crystal structures. The counter ion and the ionic radii of the metal ions have a profound influence on the crystallinity and the formed crystal structure. All compounds were characterized in detail by thermogravimetric analyses, IR spectroscopy and magnetic susceptibility measurements. The proton conductivity of two selected compounds is also reported.

8.
Chemistry ; 18(35): 10857-64, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22829445

RESUMO

New nitridosilicates Ca(3)Sm(3)[Si(9)N(17)] and Ca(3)Yb(3)[Si(9)N(17)] were synthesized from the reactions of the pure metals (calcium and samarium/ytterbium) with silicon diimide "Si(NH)(2) " in a radio-frequency (rf) furnace at temperatures of up to 1650 °C. These isotypic compounds crystallize in the cubic space group P4(-)3m (no. 215) with lattice parameters a=739.50(3) pm; V=0.4044(1) nm(3); Z=1; wR(2) =0.029 (240 diffraction data, 26 parameters) for Ca(3)Sm(3)[Si(9)N(17)] and a=730.20(2) pm; V=0.3893(1) nm(3); wR(2) =0.039 (387 diffraction data, 27 parameters) for Ca(3)Yb(3)[Si(9)N(17)]. The new structure type of Ca(3)RE(3)[Si(9)N(17)] (RE=Sm, Yb) consists of two independent infinite networks, each of which have an expanded sphalerite (ZnS) topology in which the positions of the Zn and S atoms are replaced by voluminous [N([4])(SiN(3))(4)] units and [Si(5)N(16)] supertetrahedra, respectively, thereby displaying twofold interpenetration. As well, a structural description of Ca(3)Yb(3)[Si(9)N(17)], its thermal stability, and magnetic properties, as well as UV/Vis, IR, and Raman spectra, are presented.

9.
Acta Crystallogr Sect E Struct Rep Online ; 64(Pt 11): m1417-8, 2008 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21580864

RESUMO

The crystal structure of the title compound, [Cu(2)(C(2)H(4)O(6)PS)(OH)(H(2)O)(2)]·3H(2)O, consists of two Cu(2+) ions, one (O(3)PC(2)H(4)SO(3))(3-) ion and one OH(-) ion, as well as five water mol-ecules, two of which are coordinated to Cu(2+). The Cu(2+) ions are coordinated by six O atoms. The CuO(6) polyhedra are connected by µ- and µ(3)-O atoms into zigzag chains along the b axis. These chains are further connected by -CH(2)CH(2)- groups to form layers, in turn building a three-dimensional framework via hydrogen bonding.

10.
Acta Crystallogr B ; 62(Pt 2): 205-11, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16552153

RESUMO

The structural compression mechanism of Ce4[Si4O(3 + x)N(7 - x)]Cl(1 - x)O(x), x approximately = 0.2, was investigated by in situ single-crystal synchrotron X-ray diffraction at pressures of 3.0, 8.5 and 8.6 GPa using the diamond-anvil cell technique. On increasing pressure the low-pressure cubic structure first undergoes only minor structural changes. Between 8.5 and 8.6 GPa a first-order phase transition occurs, accompanied by a change of the single-crystal colour from light orange to dark red. The main structural mechanisms, leading to a volume reduction of about 5% at the phase transition, are an increase in and a rearrangement of the Ce coordination, the loss of the Ce2, Ce3 split position, and a bending of some of the inter-polyhedral Si-N-Si angles in the arrangement of the corner-sharing Si tetrahedra. The latter is responsible for the short c axis of the orthorhombic high-pressure structure compared with the cell parameter of the cubic low-pressure structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...