Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 77(3): 1249-68, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9084594

RESUMO

The circuitry underlying the Aplysia siphon-elicited siphon-withdrawal reflex has been widely used to study the cellular substrates of simple forms of learning and memory. Nonetheless, the functional roles of the different neurons and synaptic connections modified with learning have yet to be firmly established. In this study we constructed a realistic computer simulation of the best-understood component of this network to better understand how the siphon-withdrawal circuit works. We used an integrate-and-fire scheme to simulate four neuron types (LFS, L29, L30, L34) and 10 synaptic connections. Each of these circuit components was individually constructed to match the mean or typical example of its biological counterpart on the basis of group measurements of each circuit element. Once each cell and synapse was modeled, its free parameters were fixed and not subject to further manipulation. The LFS motor neurons respond to sensory input with a brief phasic burst followed by a long-lasting period of tonic firing. We found that the assembled model network responded to sensory input in a qualitatively similar fashion, suggesting that many of the interneurons important for producing the LFS firing response have now been identified. By selectively removing different circuit elements, we determined the contribution of each of the LFS firing pattern. Our first finding was that the monosynaptic sensory neuron to motor neuron pathway contributed only to the initial brief burst of the LFS firing response, whereas the polysynaptic pathway determined the overall duration of LFS firing. By making more selective deletions, we found that the circuit elements responsible for transforming brief sensory neuron discharges into long-lasting LFS firing were the slow components of the L29-LFS fast/slow excitatory postsynaptic potentials. The inhibitory L30 neurons exerted a significant braking action on the flow of excitatory information through the circuit. Interestingly, L30 lost its ability to reduce the duration of LFS firing at high stimulus intensities. This was found to be due to the intrinsic nature of L30's current-frequency relationship. Some circuit elements, including interneuron L34, and the electrical coupling between L29 and L30 were found to have little impact when subtracted from the network. These results represent a detailed dissection of the functional roles of the different elements of the siphon-elicited siphon-withdrawal circuit in Aplysia. Because many vertebrate and invertebrate circuits perform similar tasks and contain similar information processing elements, aspects of these results may be of general significance for understanding the function of motor networks. In addition, because several sites in this network store learning-related information, these results are relevant to elucidating the functional significance of the distributed storage of learned information in Aplysia.


Assuntos
Aplysia/fisiologia , Músculos/fisiologia , Rede Nervosa/fisiologia , Reflexo/fisiologia , Animais , Simulação por Computador , Técnicas In Vitro , Interneurônios/fisiologia , Modelos Neurológicos , Músculos/inervação , Sinapses/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...