Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38083196

RESUMO

Wearable sensors have become increasingly popular in recent years, with technological advances leading to cheaper, more widely available, and smaller devices. As a result, there has been a growing interest in applying machine learning techniques for Human Activity Recognition (HAR) in healthcare. These techniques can improve patient care and treatment by accurately detecting and analyzing various activities and behaviors. However, current approaches often require large amounts of labeled data, which can be difficult and time-consuming to obtain. In this study, we propose a new approach that uses synthetic sensor data generated by 3D engines and Generative Adversarial Networks to overcome this obstacle. We evaluate the synthetic data using several methods and compare them to real-world data, including classification results with baseline models. Our results show that synthetic data can improve the performance of deep neural networks, achieving a better F1-score for less complex activities on a known dataset by 8.4% to 73% than state-of-the-art results. However, as we showed in a self-recorded nursing activity dataset of longer duration, this effect diminishes with more complex activities. This research highlights the potential of synthetic sensor data generated from multiple sources to overcome data scarcity in HAR.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Humanos , Atividades Humanas , Reconhecimento Psicológico
2.
Sensors (Basel) ; 23(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38067946

RESUMO

Sensor-based human activity recognition is becoming ever more prevalent. The increasing importance of distinguishing human movements, particularly in healthcare, coincides with the advent of increasingly compact sensors. A complex sequence of individual steps currently characterizes the activity recognition pipeline. It involves separate data collection, preparation, and processing steps, resulting in a heterogeneous and fragmented process. To address these challenges, we present a comprehensive framework, HARE, which seamlessly integrates all necessary steps. HARE offers synchronized data collection and labeling, integrated pose estimation for data anonymization, a multimodal classification approach, and a novel method for determining optimal sensor placement to enhance classification results. Additionally, our framework incorporates real-time activity recognition with on-device model adaptation capabilities. To validate the effectiveness of our framework, we conducted extensive evaluations using diverse datasets, including our own collected dataset focusing on nursing activities. Our results show that HARE's multimodal and on-device trained model outperforms conventional single-modal and offline variants. Furthermore, our vision-based approach for optimal sensor placement yields comparable results to the trained model. Our work advances the field of sensor-based human activity recognition by introducing a comprehensive framework that streamlines data collection and classification while offering a novel method for determining optimal sensor placement.


Assuntos
Lebres , Humanos , Animais , Fluxo de Trabalho , Atividades Humanas , Movimento
3.
Sci Data ; 10(1): 727, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863902

RESUMO

Accurate and comprehensive nursing documentation is essential to ensure quality patient care. To streamline this process, we present SONAR, a publicly available dataset of nursing activities recorded using inertial sensors in a nursing home. The dataset includes 14 sensor streams, such as acceleration and angular velocity, and 23 activities recorded by 14 caregivers using five sensors for 61.7 hours. The caregivers wore the sensors as they performed their daily tasks, allowing for continuous monitoring of their activities. We additionally provide machine learning models that recognize the nursing activities given the sensor data. In particular, we present benchmarks for three deep learning model architectures and evaluate their performance using different metrics and sensor locations. Our dataset, which can be used for research on sensor-based human activity recognition in real-world settings, has the potential to improve nursing care by providing valuable insights that can identify areas for improvement, facilitate accurate documentation, and tailor care to specific patient conditions.


Assuntos
Aprendizado de Máquina , Cuidados de Enfermagem , Humanos , Enfermagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...