Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 34(11): 1809-1823.e6, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323236

RESUMO

Mitochondria have their own DNA (mtDNA), which is susceptible to the accumulation of disease-causing mutations. To prevent deleterious mutations from being inherited, the female germline has evolved a conserved quality control mechanism that remains poorly understood. Here, through a large-scale screen, we uncover a unique programmed germline mitophagy (PGM) that is essential for mtDNA quality control. We find that PGM is developmentally triggered as germ cells enter meiosis by inhibition of the target of rapamycin complex 1 (TORC1). We identify a role for the RNA-binding protein Ataxin-2 (Atx2) in coordinating the timing of PGM with meiosis. We show that PGM requires the mitophagy receptor BNIP3, mitochondrial fission and translation factors, and members of the Atg1 complex, but not the mitophagy factors PINK1 and Parkin. Additionally, we report several factors that are critical for germline mtDNA quality control and show that pharmacological manipulation of one of these factors promotes mtDNA quality control.


Assuntos
DNA Mitocondrial , Mitofagia , Mitofagia/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Células Germinativas/metabolismo , Controle de Qualidade
2.
Nature ; 570(7761): 380-384, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31092924

RESUMO

Mitochondria contain their own genomes that, unlike nuclear genomes, are inherited only in the maternal line. Owing to a high mutation rate and low levels of recombination of mitrochondrial DNA (mtDNA), special selection mechanisms exist in the female germline to prevent the accumulation of deleterious mutations1-5. However, the molecular mechanisms that underpin selection are poorly understood6. Here we visualize germline selection in Drosophila using an allele-specific fluorescent in situ-hybridization approach to distinguish wild-type from mutant mtDNA. Selection first manifests in the early stages of Drosophila oogenesis, triggered by reduction of the pro-fusion protein Mitofusin. This leads to the physical separation of mitochondrial genomes into different mitochondrial fragments, which prevents the mixing of genomes and their products and thereby reduces complementation. Once fragmented, mitochondria that contain mutant genomes are less able to produce ATP, which marks them for selection through a process that requires the mitophagy proteins Atg1 and BNIP3. A reduction in Atg1 or BNIP3 decreases the amount of wild-type mtDNA, which suggests a link between mitochondrial turnover and mtDNA replication. Fragmentation is not only necessary for selection in germline tissues, but is also sufficient to induce selection in somatic tissues in which selection is normally absent. We postulate that there is a generalizable mechanism for selection against deleterious mtDNA mutations, which may enable the development of strategies for the treatment of mtDNA disorders.


Assuntos
DNA Mitocondrial/genética , Drosophila/citologia , Drosophila/genética , Células Germinativas/metabolismo , Mitocôndrias/genética , Mitofagia , Trifosfato de Adenosina/metabolismo , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , DNA Mitocondrial/isolamento & purificação , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Feminino , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação
3.
PLoS One ; 11(3): e0151279, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26986723

RESUMO

The neural plasticity of sensory systems is being increasingly recognized as playing a role in learning and memory. We have previously shown that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila melanogaster olfactory receptor neurons (ORNs) for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. In this paper we address how long-term exposure to odor activates Notch and how Notch in conjunction with chronic odor mediates olfactory plasticity. We show that upon chronic odor exposure a non-canonical Notch pathway mediates an increase in the volume of glomeruli by a mechanism that is autonomous to ORNs. In addition to activating a pathway that is autonomous to ORNs, chronic odor exposure also activates the Notch ligand Delta in second order projection neurons (PNs), but this does not appear to require acetylcholine receptor activation in PNs. Delta on PNs then feeds back to activate canonical Notch signaling in ORNs, which restricts the extent of the odor induced increase in glomerular volume. Surprisingly, even though the pathway that mediates the increase in glomerular volume is autonomous to ORNs, nonproductive transsynaptic Delta/Notch interactions that do not activate the canonical pathway can block the increase in volume. In conjunction with chronic odor, the canonical Notch pathway also enhances cholinergic activation of PNs. We present evidence suggesting that this is due to increased acetylcholine release from ORNs. In regulating physiological plasticity, Notch functions solely by the canonical pathway, suggesting that there is no direct connection between morphological and physiological plasticity.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios Receptores Olfatórios/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Acetatos/farmacologia , Monoterpenos Acíclicos , Animais , Animais Geneticamente Modificados , Cálcio/metabolismo , Colina O-Acetiltransferase/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Túbulos de Malpighi/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência por Excitação Multifotônica , Mutação , Odorantes , Neurônios Receptores Olfatórios/efeitos dos fármacos , Ligação Proteica , Interferência de RNA , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Receptores Notch/genética , Terpenos/farmacologia
4.
PLoS Genet ; 11(5): e1005244, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26011623

RESUMO

Olfactory receptor neurons (ORNs) convey odor information to the central brain, but like other sensory neurons were thought to play a passive role in memory formation and storage. Here we show that Notch, part of an evolutionarily conserved intercellular signaling pathway, is required in adult Drosophila ORNs for the structural and functional plasticity of olfactory glomeruli that is induced by chronic odor exposure. Specifically, we show that Notch activity in ORNs is necessary for the odor specific increase in the volume of glomeruli that occurs as a consequence of prolonged odor exposure. Calcium imaging experiments indicate that Notch in ORNs is also required for the chronic odor induced changes in the physiology of ORNs and the ensuing changes in the physiological response of their second order projection neurons (PNs). We further show that Notch in ORNs acts by both canonical cleavage-dependent and non-canonical cleavage-independent pathways. The Notch ligand Delta (Dl) in PNs switches the balance between the pathways. These data define a circuit whereby, in conjunction with odor, N activity in the periphery regulates the activity of neurons in the central brain and Dl in the central brain regulates N activity in the periphery. Our work highlights the importance of experience dependent plasticity at the first olfactory synapse.


Assuntos
Proteínas de Drosophila/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Neurônios Receptores Olfatórios/metabolismo , Receptores Notch/genética , Células Receptoras Sensoriais/metabolismo , Olfato/genética , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Condutos Olfatórios , Receptores Notch/metabolismo , Células Receptoras Sensoriais/fisiologia , Olfato/fisiologia , Sinapses/genética , Sinapses/fisiologia
5.
Neuron ; 69(3): 468-81, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21315258

RESUMO

Delta/Serrate/Lag2 (DSL) ligands and their Notch family receptors have profound and pervasive roles in development. They are also expressed in adult tissues, notably in mature neurons and glia in the brain, where their roles are unknown. Here, focusing on the sense of smell in adult Drosophila, we show that Notch is activated in select olfactory receptor neurons (ORNs) in an odorant-specific fashion. This response requires olfactory receptor activity and the Notch ligand Delta. We present evidence that Notch activation depends on synaptic transmission by the ORNs in which the receptors are active and is modulated by the activity of local interneurons in the antennal lobe. It is also subject to regulatory inputs from olfactory receptor activity in other ORNs. These findings identify a correlate of stimulus-dependent brain activity and potentially new forms of neural integration and plasticity.


Assuntos
Encéfalo/fisiologia , Proteínas de Drosophila/fisiologia , Proteínas de Membrana/fisiologia , Odorantes , Neurônios Receptores Olfatórios/fisiologia , Olfato/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Peptídeos e Proteínas de Sinalização Intracelular , Receptores Notch/fisiologia , Receptores Odorantes/fisiologia , Transdução de Sinais/fisiologia
6.
Mech Dev ; 115(1-2): 41-51, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12049766

RESUMO

Notch (N) is a large transmembrane protein that acts as a receptor in an evolutionarily conserved intercellular signalling pathway. Because of this conservation, it has been assumed that biochemical events mediating N function are identical in all species. For instance, intracellular maturation by furin protease and subunit assembly leading to the formation of a heterodimeric cell surface N receptor are thought to be central to its function in both mammals and flies. However, in Drosophila the majority of N appears to be full-length. It has not been determined whether this full-length N protein is on the cell surface. We describe experiments which indicate that unlike mammalian N, the majority of Drosophila N on the cell surface is full-length and that in Drosophila, in vivo, furin cleavage is not required for biological activity. We further show that the behaviour of fly and mouse N can be interchanged simply by swapping the regions in which the mammalian furin-like cleavage site is located.


Assuntos
Proteínas de Membrana/metabolismo , Subtilisinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas do Domínio Armadillo , Encéfalo/embriologia , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Furina , Glicoproteínas/metabolismo , Dados de Sequência Molecular , Receptores Notch , Proteínas Repressoras/metabolismo , Homologia de Sequência de Aminoácidos , Transativadores/metabolismo , Fatores de Transcrição
7.
Genes Dev ; 16(2): 209-21, 2002 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-11799064

RESUMO

Loss of Kuzbanian, a member of the ADAM family of metalloproteases, produces neurogenic phenotypes in Drosophila. It has been suggested that this results from a requirement for kuzbanian-mediated cleavage of the Notch ligand Delta. Using transgenic Drosophila expressing transmembrane Notch proteins, we show that kuzbanian, independent of any role in Delta processing, is required for the cleavage of Notch. We show that Kuzbanian can physically associate with Notch and that removal of kuzbanian activity by RNA-mediated interference in Drosophila tissue culture cells eliminates processing of ligand-independent transmembrane Notch molecules. Our data suggest that in Drosophila, kuzbanian can mediate S2 cleavage of Notch.


Assuntos
Desintegrinas/metabolismo , Proteínas de Drosophila , Proteínas de Membrana/metabolismo , Metaloendopeptidases/metabolismo , Animais , Sequência de Bases , Núcleo Celular/metabolismo , Primers do DNA , Drosophila/embriologia , Hidrólise , Fenótipo , Testes de Precipitina , RNA/metabolismo , Receptores Notch
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...