Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16130, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752177

RESUMO

Percutaneous drains have provided a minimally invasive way to treat a wide range of disorders from abscess drainage to enteral feeding solutions to treating hydronephrosis. These drains suffer from a high rate of dislodgement of up to 30% resulting in emergency room visits, repeat hospitalizations, and catheter repositioning/replacement procedures, which incur significant morbidity and mortality. Using ex vivo and in vivo models, a force body diagram was utilized to determine the forces experienced by a drainage catheter during dislodgement events, and the individual components which contribute to drainage catheter securement were empirically collected. Prototypes of a skin level catheter securement and valved quick release system were then developed. The system was inspired by capstans used in boating for increasing friction of a line around a central spool and quick release mechanisms used in electronics such as the Apple MagSafe computer charger. The device was tested in a porcine suprapubic model, which demonstrated the effectiveness of the device to prevent drain dislodgement. The prototype demonstrated that the miniaturized versions of technologies used in boating and electronics industries were able to meet the needs of preventing dislodgement of patient drainage catheters.


Assuntos
Catéteres , Remoção de Dispositivo , Humanos , Animais , Suínos , Drenagem , Fontes de Energia Elétrica , Eletrônica
2.
J Appl Physiol (1985) ; 117(5): 507-17, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24994885

RESUMO

This study investigates whether a flexible pole can be used as an energy-saving method for humans carrying loads. We model the carrier and pole system as a driven damped harmonic oscillator and predict that the energy expended by the carrier is affected by the compliance of the pole and the ratio between the pole's natural frequency and the carrier's step frequency. We tested the model by measuring oxygen consumption in 16 previously untrained male participants walking on a treadmill at four step frequencies using two loaded poles: one made of bamboo and one of steel. We found that when the bamboo pole was carried at a step frequency 20% greater than its natural frequency, the motions of the centers of mass of the load and carrier were approximately equal in amplitude and opposite in phase, which we predicted would save energy for the carrier. Carrying the steel pole, however, resulted in the carrier and loads oscillating in phase and with roughly equal amplitude. Although participants were less economical using poles than predicted costs using conventional fixed-load techniques (such as backpacks), the bamboo pole was on average 5.0% less costly than the steel pole. When allowed to select their cadence, participants also preferred to carry the bamboo pole at step frequencies of ∼2.0 Hz. This frequency, which is significantly higher than the preferred unloaded step frequency, is most economical. These experiments suggest that pole carriers can intuitively adjust their gaits, or choose poles with appropriate compliance, to increase energetic savings.


Assuntos
Metabolismo Energético/fisiologia , Caminhada/fisiologia , Suporte de Carga/fisiologia , Adolescente , Algoritmos , Antropometria , Fenômenos Biomecânicos , Humanos , Masculino , Modelos Biológicos , Consumo de Oxigênio/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...