Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Pers Med ; 14(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276234

RESUMO

Parkinson's disease is the second most common neurodegenerative disease and is increasing in incidence. The combination of motor and non-motor symptoms makes this a devastating disease for people with Parkinson's disease and their care givers. Parkinson's disease is characterised by mitochondrial dysfunction and neuronal death in the substantia nigra, a reduction in dopamine, accumulation of α-synuclein aggregates and neuroinflammation. The microbiome-gut-brain axis is also important in Parkinson's disease, involved in the spread of inflammation and aggregated α-synuclein. The mainstay of Parkinson's disease treatment is dopamine replacement therapy, which can reduce some of the motor signs. There is a need for additional treatment options to supplement available medications. Photobiomodulation (PBM) is a form of light therapy that has been shown to have multiple clinical benefits due to its enhancement of the mitochondrial electron transport chain and the subsequent increase in mitochondrial membrane potential and ATP production. PBM also modulates cellular signalling and has been shown to reduce inflammation. Clinically, PBM has been used for decades to improve wound healing, treat pain, reduce swelling and heal deep tissues. Pre-clinical experiments have indicated that PBM has the potential to improve the clinical signs of Parkinson's disease and to provide neuroprotection. This effect is seen whether the PBM is directed to the head of the animal or to other parts of the body (remotely). A small number of clinical trials has given weight to the possibility that using PBM can improve both motor and non-motor clinical signs and symptoms of Parkinson's disease and may potentially slow its progression.

2.
EClinicalMedicine ; 66: 102338, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38094162

RESUMO

Background: Parkinson's disease is a progressive neurological disease with limited treatment options. Animal models and a proof-of-concept case series have suggested that photobiomodulation may be an effective adjunct treatment for the symptoms of Parkinson's disease. The aim was to determine the safety and feasibility of transcranial photobiomodulation (tPBM) to reduce the motor signs of Parkinson's disease. Methods: In this double-blind, randomised, sham-controlled feasibility trial, patients (aged 59-85 years) with idiopathic Parkinson's disease were treated with a tPBM helmet for 12 weeks (72 treatments with either active or sham therapy; stage 1). Treatment was delivered in the participants' homes, monitored by internet video conferencing (Zoom). Stage 1 was followed by 12 weeks of no treatment for those on active therapy (active-to-no-treatment group), and 12 weeks of active treatment for those on sham (sham-to-active group), for participants who chose to continue (stage 2). The active helmet device delivered red and infrared light to the head for 24 min, 6 days per week. The primary endpoints were safety and motor signs, as assessed by a modified Movement Disorders Society revision of the Unified Parkinson's Disease Rating Scale Part III (MDS-UPDRS-III)-motor scale. This trial is registered with ANZCTR, ACTRN 12621001722886. Findings: Between Dec 6, 2021, and Aug 12, 2022, 20 participants were randomly allocated to each of the two groups (10 females plus 10 males per group). All participants in the active group and 18 in the sham group completed 12 weeks of treatment. 14 participants in the sham group chose to continue to active treatment and 12 completed the full 12 weeks of active treatment. Treatment was well tolerated and feasible to deliver, with only minor, temporary adverse events. Of the nine suspected adverse events that were identified, two minor reactions may have been attributable to the device in the sham-to-active group during the active treatment weeks of the trial. One participant experienced temporary leg weakness. A second participant reported decreased fine motor function in the right hand. Both participants continued the trial. The mean modified MDS-UPDRS-III scores for the sham-to-active group at baseline, after 12 weeks of sham treatment, and after 12 weeks of active treatment were 26.8 (sd 14.6), 20.4 (sd 12.8), and 12.2 (sd 8.9), respectively, and for the active-to-no-treatment group these values were 21.3 (sd 9.4), 16.5 (sd 9.4), and 15.3 (sd 10.8), respectively. There was no significant difference between groups at any assessment point. The mean difference between groups at baseline was 5.5 (95% confidence interval (CI) -2.4 to 13.4), after stage 1 was 3.9 (95% CI -3.5 to 11.3 and after stage 2 was -3.1 (95% CI 2.7 to -10.6). Interpretation: Our findings add to the evidence base to suggest that tPBM is a safe, tolerable, and feasible non-pharmaceutical adjunct therapy for Parkinson's disease. While future work is needed our results lay the foundations for an adequately powered randomised placebo-controlled clinical trial. Funding: SYMBYX Pty Ltd.

3.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298527

RESUMO

The human gut microbiome contains the largest number of bacteria in the body and has the potential to greatly influence metabolism, not only locally but also systemically. There is an established link between a healthy, balanced, and diverse microbiome and overall health. When the gut microbiome becomes unbalanced (dysbiosis) through dietary changes, medication use, lifestyle choices, environmental factors, and ageing, this has a profound effect on our health and is linked to many diseases, including lifestyle diseases, metabolic diseases, inflammatory diseases, and neurological diseases. While this link in humans is largely an association of dysbiosis with disease, in animal models, a causative link can be demonstrated. The link between the gut and the brain is particularly important in maintaining brain health, with a strong association between dysbiosis in the gut and neurodegenerative and neurodevelopmental diseases. This link suggests not only that the gut microbiota composition can be used to make an early diagnosis of neurodegenerative and neurodevelopmental diseases but also that modifying the gut microbiome to influence the microbiome-gut-brain axis might present a therapeutic target for diseases that have proved intractable, with the aim of altering the trajectory of neurodegenerative and neurodevelopmental diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, autism spectrum disorder, and attention-deficit hyperactivity disorder, among others. There is also a microbiome-gut-brain link to other potentially reversible neurological diseases, such as migraine, post-operative cognitive dysfunction, and long COVID, which might be considered models of therapy for neurodegenerative disease. The role of traditional methods in altering the microbiome, as well as newer, more novel treatments such as faecal microbiome transplants and photobiomodulation, are discussed.


Assuntos
Transtorno do Espectro Autista , COVID-19 , Microbiota , Doenças Neurodegenerativas , Animais , Humanos , Eixo Encéfalo-Intestino , Doenças Neurodegenerativas/metabolismo , Transtorno do Espectro Autista/metabolismo , Disbiose/metabolismo , Síndrome de COVID-19 Pós-Aguda , COVID-19/metabolismo , Encéfalo/metabolismo
4.
J Clin Med ; 12(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37109183

RESUMO

Emerging evidence is increasingly supporting the use of transcranial photobiomodulation (tPBM) to improve symptoms of neurodegenerative diseases, including Parkinson's disease (PD). The objective of this study was to analyse the safety and efficacy of tPBM for PD motor symptoms. The study was a triple blind, randomized placebo-controlled trial with 40 idiopathic PD patients receiving either active tPBM (635 nm plus 810 nm LEDs) or sham tPBM for 24 min per day (56.88J), six days per week, for 12 weeks. The primary outcome measures were treatment safety and a 37-item MDS-UPDRS-III (motor domain) assessed at baseline and 12 weeks. Individual MDS-UPDRS-III items were clustered into sub-score domains (facial, upper-limb, lower-limb, gait, and tremor). The treatment produced no safety concerns or adverse events, apart from occasional temporary and minor dizziness. There was no significant difference in total MDS-UPDRS-III scores between groups, presumably due to the placebo effect. Additional analyses demonstrated that facial and lower-limb sub-scores significantly improved with active treatment, while gait and lower-limb sub-scores significantly improved with sham treatment. Approximately 70% of participants responded to active treatment (≥5 decrease in MDS-UPDRS-III score) and improved in all sub-scores, while sham responders improved in lower-limb sub-scores only. tPBM appears to be a safe treatment and improved several PD motor symptoms in patients that responded to treatment. tPBM is proving to be increasingly attractive as a possible non-pharmaceutical adjunct therapy.

5.
Biomedicines ; 11(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36830774

RESUMO

Despite a significant focus on the photochemical and photoelectrical mechanisms underlying photobiomodulation (PBM), its complex functions are yet to be fully elucidated. To date, there has been limited attention to the photophysical aspects of PBM. One effect of photobiomodulation relates to the non-visual phototransduction pathway, which involves mechanotransduction and modulation to cytoskeletal structures, biophotonic signaling, and micro-oscillatory cellular interactions. Herein, we propose a number of mechanisms of PBM that do not depend on cytochrome c oxidase. These include the photophysical aspects of PBM and the interactions with biophotons and mechanotransductive processes. These hypotheses are contingent on the effect of light on ion channels and the cytoskeleton, the production of biophotons, and the properties of light and biological molecules. Specifically, the processes we review are supported by the resonant recognition model (RRM). This previous research demonstrated that protein micro-oscillations act as a signature of their function that can be activated by resonant wavelengths of light. We extend this work by exploring the local oscillatory interactions of proteins and light because they may affect global body circuits and could explain the observed effect of PBM on neuro-cortical electroencephalogram (EEG) oscillations. In particular, since dysrhythmic gamma oscillations are associated with neurodegenerative diseases and pain syndromes, including migraine with aura and fibromyalgia, we suggest that transcranial PBM should target diseases where patients are affected by impaired neural oscillations and aberrant brain wave patterns. This review also highlights examples of disorders potentially treatable with precise wavelengths of light by mimicking protein activity in other tissues, such as the liver, with, for example, Crigler-Najjar syndrome and conditions involving the dysregulation of the cytoskeleton. PBM as a novel therapeutic modality may thus behave as "precision medicine" for the treatment of various neurological diseases and other morbidities. The perspectives presented herein offer a new understanding of the photophysical effects of PBM, which is important when considering the relevance of PBM therapy (PBMt) in clinical applications, including the treatment of diseases and the optimization of health outcomes and performance.

6.
Neurol Int ; 14(4): 884-893, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36412693

RESUMO

Autism is a neurodevelopmental condition that starts in childhood and continues into adulthood. The core characteristics include difficulties with social interaction and communication, together with restricted and repetitive behaviours. There are a number of key abnormalities of brain structure and function that trigger these behavioural patterns, including an imbalance of functional connectivity and synaptic transmission, neuronal death, gliosis and inflammation. In addition, autism has been linked to alterations in the gut microbiome. Unfortunately, as it stands, there are few treatment options available for patients. In this mini-review, we consider the effectiveness of a potential new treatment for autism, known as photobiomodulation, the therapeutic use of red to near infrared light on body tissues. This treatment has been shown in a range of pathological conditions-to improve the key changes that characterise autism, including the functional connectivity and survival patterns of neurones, the patterns of gliosis and inflammation and the composition of the microbiome. We highlight the idea that photobiomodulation may form an ideal treatment option for autism, one that is certainly worthy of further investigation.

7.
Front Neurosci ; 16: 945796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061601

RESUMO

Introduction: Parkinson's disease (PD) is the second most common, progressive, and debilitating neurodegenerative disease associated with aging and the most common movement disorder. Photobiomodulation (PBM), the use of non-thermal light for therapeutic purposes using laser or light emitting diodes (LED) is an emerging non-invasive treatment for a diverse range of neurological conditions. The main objectives of this clinical trial are to investigate the feasibility, safety, tolerability, and efficacy of a novel transcranial LED helmet device (the "PDNeuro") in the alleviation of symptoms of PD. Methods and analysis: This is a 24-week, two-arm, triple-blinded randomized placebo-controlled clinical trial of a novel transcranial "PDNeuro" LED Helmet, comparing an active helmet to a sham helmet device. In a survey, 40 PD participants with Hoehn and Yahr Stage I-III during ON periods will be enrolled and randomly assigned into two groups. Both groups will be monitored weekly for the safety and tolerability of the "PDNeuro" LED Helmet. Clinical signs and symptoms assessed will include mobility, fine motor skills and cognition, with data collected at baseline, 12 weeks, and 24 weeks. Assessment tools include the TUG, UPDRS, and MoCA all validated for use in PD patients. Patient's adherence to the device usage and participant drop out will be monitored weekly. At 12 weeks both placebo and treatment groups will crossover and placebo participants offered the treatment. The main indicator for clinical efficacy of the "PDneuro" Helmet is evidence of sustained improvements in motor and non-motor symptoms obtained from participant self-reported changes, carer reporting of changes and objective reassessment by the investigators. The outcomes will assist in a future larger randomized trial design. Clinical Trial Registration: [https://www.anzctr.org.au], identifier [12621001722886].

8.
Front Neurosci ; 16: 942536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968381

RESUMO

Over the last seventy years or so, many previous studies have shown that photobiomodulation, the use of red to near infrared light on body tissues, can improve central and peripheral neuronal function and survival in both health and in disease. These improvements are thought to arise principally from an impact of photobiomodulation on mitochondrial and non-mitochondrial mechanisms in a range of different cell types, including neurones. This impact has downstream effects on many stimulatory and protective genes. An often-neglected feature of nearly all of these improvements is that they have been induced during the state of wakefulness. Recent studies have shown that when applied during the state of sleep, photobiomodulation can also be of benefit, but in a different way, by improving the flow of cerebrospinal fluid and the clearance of toxic waste-products from the brain. In this review, we consider the potential differential effects of photobiomodulation dependent on the state of arousal. We speculate that the effects of photobiomodulation is on different cells and systems depending on whether it is applied during wakefulness or sleep, that it may follow a circadian rhythm. We speculate further that the arousal-dependent photobiomodulation effects are mediated principally through a biophoton - ultra-weak light emission - network of communication and repair across the brain.

9.
Int J Mol Sci ; 23(14)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35887386

RESUMO

Chronic kidney disease (CKD) is a growing global public health problem. The implementation of evidence-based clinical practices only defers the development of kidney failure. Death, transplantation, or dialysis are the consequences of kidney failure, resulting in a significant burden on the health system. Hence, innovative therapeutic strategies are urgently needed due to the limitations of current interventions. Photobiomodulation (PBM), a form of non-thermal light therapy, effectively mitigates mitochondrial dysfunction, reactive oxidative stress, inflammation, and gut microbiota dysbiosis, all of which are inherent in CKD. Preliminary studies suggest the benefits of PBM in multiple diseases, including CKD. Hence, this review will provide a concise summary of the underlying action mechanisms of PBM and its potential therapeutic effects on CKD. Based on the findings, PBM may represent a novel, non-invasive and non-pharmacological therapy for CKD, although more studies are necessary before PBM can be widely recommended.


Assuntos
Microbioma Gastrointestinal , Terapia com Luz de Baixa Intensidade , Insuficiência Renal Crônica , Disbiose , Humanos , Inflamação , Diálise Renal , Insuficiência Renal Crônica/radioterapia
10.
Nutrients ; 14(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745257

RESUMO

Faecal microbiota transplantation (FMT) has attracted increasing attention as an intervention in many clinical conditions, including autoimmune, enteroendocrine, gastroenterological, and neurological diseases. For years, FMT has been an effective second-line treatment for Clostridium difficile infection (CDI) with beneficial outcomes. FMT is also promising in improving bowel diseases, such as ulcerative colitis (UC). Pre-clinical and clinical studies suggest that this microbiota-based intervention may influence the development and progression of chronic kidney disease (CKD) via modifying a dysregulated gut-kidney axis. Despite the high morbidity and mortality due to CKD, there are limited options for treatment until end-stage kidney disease occurs, which results in death, dialysis, or kidney transplantation. This imposes a significant financial and health burden on the individual, their families and careers, and the health system. Recent studies have suggested that strategies to reverse gut dysbiosis using FMT are a promising therapy in CKD. This review summarises the preclinical and clinical evidence and postulates the potential therapeutic effect of FMT in the management of CKD.


Assuntos
Infecções por Clostridium , Colite Ulcerativa , Insuficiência Renal Crônica , Colite Ulcerativa/terapia , Transplante de Microbiota Fecal/métodos , Fezes , Humanos , Diálise Renal , Insuficiência Renal Crônica/terapia , Resultado do Tratamento
11.
J Pers Med ; 12(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35055364

RESUMO

There is a paucity of information on the effect of photobiomodulation therapy on gut microbiome composition. Parkinson's disease is a progressive neurological disorder with few management options, although the gut microbiome has been suggested as a potential avenue of treatment. We retrospectively analysed the microbiome from human stool samples from a previously published study, which had demonstrated the efficacy of photobiomodulation to treat Parkinson's patients' symptoms. Specifically, we have observed changes in the microbiome of Parkinson's patients after a 12-week treatment regimen with photobiomodulation to the abdomen, neck, head and nose. Noted were positive changes in the Firmicutes to Bacteroidetes (F:B) ratio, which is often interpreted as a proxy for gut health.

12.
Photobiomodul Photomed Laser Surg ; 40(2): 78-87, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34964662

RESUMO

Background: The influence of gender is significant in the manifestation and response to many diseases and in the treatment strategy. Photobiomodulation (PBM) therapy, including laser acupuncture, is an evidence-based treatment and disease prevention modality that has shown promising efficacy for a myriad of chronic and acute diseases. Anecdotal experience and limited clinical trials suggest gender differences exist in treatment outcomes to PBM therapy. There is preliminary evidence that gender may be as important as skin color in the individual response to PBM therapy. Purpose: To conduct a literature search of publications addressing the effects of gender differences in PBM therapy, including laser acupuncture, to provide a narrative review of the findings, and to explore potential mechanisms for the influence of gender. Methods: A narrative review of the literature on gender differences in PBM applications was conducted using key words relating to PBM therapy and gender. Results: A total of 13 articles were identified. Of these articles, 11 have direct experimental investigations into the response difference in gender for PBM, including laser acupuncture. A variety of cadaver, human, and experimental studies demonstrated results that gender effects were significant in PBM outcome responses, including differences in tendon structural and mechanical outcomes, and mitochondrial gene expression. One cadaver experiment showed that gender was more important than skin tone. The physiologic mechanisms directing gender differences are explored and postulated. Conclusions: The review suggests that to address the requirements of a proficient precision medicine-based strategy, it is important for PBM therapy to consider gender in its treatment plan and dosing prescription. Further research is warranted to determine the correct dose for optimal gender treatment, including gender-specific treatment plans to improve outcomes, taking into account wavelength, energy exposure, intensity, and parameters related to the deliverance of treatment to each anatomical location.


Assuntos
Terapia por Acupuntura , Terapia com Luz de Baixa Intensidade , Humanos , Lasers , Terapia com Luz de Baixa Intensidade/métodos , Medicina de Precisão , Fatores Sexuais
13.
Photobiomodul Photomed Laser Surg ; 40(2): 98-111, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34962147

RESUMO

Objective: The beneficial effects of photobiomodulation (PBM) on cellular function are well characterized, principally deriving from the absorption of red to near-infrared radiation by chromophores such as cytochrome-c-oxidase. However, the effects and underlying mechanisms of PBM on non-mitochondria containing cells, such as red blood cells (RBCs), are relatively unknown. In this review, we evaluate studies that investigated the effects of PBM on RBCs in the peripheral circulation, with particular attention on changes in the structural and functional features of RBC membrane dynamics, as well as the potential implications of PBM as an intervention for pathologies related to RBC dysfunction. Methods: A literature review was performed in concordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol, using the following databases: PubMed; Ovid (OvidMedline); Scopus; Web of Science; Google Scholar; Scholar.ru; eLIBRARY.ru; Digital Library: Dissertation; and Russian State Library. Search results included publications in Russian, Ukrainian, and English languages after 1995. Eligible articles included the effects of PBM on RBC membrane morphology and function in the peripheral circulation, used either in isolation or alongside other interventions. Results: The majority of articles indicated beneficial changes in RBC structure and function following exposure to PBM, including increased osmotic resistance, normalization of membrane permeability, decreased free radical oxidation and concentration of intermediate products of lipid peroxidation, reduced phospholipase A2 membrane activity, and normalization of the viscoelastic properties of RBCs and erythrocyte deformability index. Most trials had small patient numbers with no long-term follow-up. Conclusions: The importance of RBC membrane dysfunction as a potential marker and mechanism for RBC pathologies was highlighted. PBM has shown to have membrane protective effects. Further clinical trials are recommended to provide more evidence PBM therapy to treat RBC-related diseases, which may, at the correct dose, improve RBC stability and deformability in RBC-related pathologies.


Assuntos
Idioma , Terapia com Luz de Baixa Intensidade , Eritrócitos , Humanos , Raios Infravermelhos , Terapia com Luz de Baixa Intensidade/métodos , Federação Russa
14.
Photobiomodul Photomed Laser Surg ; 40(2): 88-97, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34962422

RESUMO

Objective: The objective of this case study was to elucidate the effect of photobiomodulation (PBM) on the microbiome. Background: The gut microbiome has been identified as a key component of health, with gut dysbiosis, characterized by decreased microbial diversity and an altered microbial composition, being recognized as instrumental in many diseases and disorders. Previous research has suggested that the gut microbiome can be favorably altered in animal models using PBM. Materials and methods: The participant had their microbiome tested on nine occasions, three times before any treatment, three times after radiotherapy and commencement of immunotherapy for breast cancer, and three times after PBM treatment. The PBM treatment consisted of infrared laser treatment (904 nm; 700 Hz pulse frequency, 861.3 total joules) to the abdomen three times per week for 11 weeks. Results: The microbiome of the participant showed significant changes in diversity after PBM treatment, but not after cancer therapy, with an increase in the number of known beneficial bacteria (Akkermansia, Faecalibacterium, and Roseburia) and decrease in the number of potentially pathogenic genera. Conclusions: The results suggested the possibility that PBM may alter the microbiome and thus it represents a therapeutic avenue for chronic diseases with otherwise limited treatment options.


Assuntos
Microbioma Gastrointestinal , Terapia com Luz de Baixa Intensidade , Microbiota , Animais , Disbiose/terapia , Humanos , Terapia com Luz de Baixa Intensidade/métodos
17.
Photobiomodul Photomed Laser Surg ; 40(2): 123-135, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34935507

RESUMO

Objective: To investigate the potential relationship between opsins and photobiomodulation. Background: Opsins and other photoreceptors occur in all phyla and are important in light-activated signaling and organism homeostasis. In addition to the visual opsin systems of the retina (OPN1 and OPN2), there are several non-visual opsins found throughout the body tissues, including encephalopsin/panopsin (OPN3), melanopsin (OPN4), and neuropsin (OPN5), as well as other structures that have light-sensitive properties, such as enzymes, ion channels, particularly those located in cell membranes, lysosomes, and neuronal structures such as the nodes of Ranvier. The influence of these structures on exposure to light, including self-generated light within the body (autofluorescence), on circadian oscillators, and circadian and ultradian rhythms have become increasingly reported. The visual and non-visual phototransduction cascade originating from opsins and other structures has potential significant mechanistic effects on tissues and health. Methods: A PubMed and Google Scholar search was made using the search terms "photobiomodulation", "light", "neuron", "opsins", "neuropsin", "melanopsin", "encephalopsin", "rhodopsin", and "chromophore". Results: This review was examined the influence of neuropsin (also known as kallikrein 8), encephalopsin, and melanopsin specifically on ion channel function, and more broadly on the central and peripheral nervous systems. The relationship between opsins 3, 4, and 5 and photobiomodulation mechanisms was evaluated, along with a proposed role of photobiomodulation through opsins and light-sensitive organelles as potential alleviators of symptoms and accelerators of beneficial regenerative processes. The potential clinical implications of this in musculoskeletal conditions, wounds, and in the symptomatic management of neurodegenerative disease was also examined. Conclusions: Systematic research into the pleotropic therapeutic role of photobiomodulation, mediated through its action on opsins and other light-sensitive organelles may assist in the future execution of safe, low-risk precision medicine for a variety of chronic and complex disease conditions, and for health maintenance in aging.


Assuntos
Doenças Neurodegenerativas , Opsinas , Humanos , Opsinas/metabolismo , Retina/metabolismo , Opsinas de Bastonetes/metabolismo
18.
Photobiomodul Photomed Laser Surg ; 40(2): 112-122, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34919459

RESUMO

Objective: To assess whether remote application of photobiomodulation (PBM) is effective in reducing clinical signs of Parkinson's disease (PD). Background: PD is a progressive neurodegenerative disease for which there is no cure and few treatment options. There is a strong link between the microbiome-gut-brain axis and PD. PBM in animal models can reduce the signs of PD and protect the neurons from damage when applied directly to the head or to remote parts of the body. In a clinical study, PBM has been shown to improve clinical signs of PD for up to 1 year. Methods: Seven participants were treated with PBM to the abdomen and neck three times per week for 12 weeks. Participants were assessed for mobility, balance, cognition, fine motor skill, and sense of smell on enrolment, after 12 weeks of treatment in a clinic and after 33 weeks of home treatment. Results: A number of clinical signs of PD were shown to be improved by remote PBM treatment, including mobility, cognition, dynamic balance, spiral test, and sense of smell. Improvements were individual to the participant. Some improvements were lost for certain participants during at-home treatment, which coincided with a number of enforced coronavirus disease 2019 (COVID-19) pandemic lockdown periods. Conclusions: Remote application of PBM was shown to be an effective treatment for a number of clinical signs of PD, with some being maintained for 45 weeks, despite lockdown restrictions. Improvements in clinical signs were similar to those seen with the application of remote plus transcranial PBM treatment in a previous study. Clinical Trial Registration number: U1111-1205-2035.


Assuntos
COVID-19 , Terapia com Luz de Baixa Intensidade , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Controle de Doenças Transmissíveis , Humanos , Doença de Parkinson/radioterapia , SARS-CoV-2
19.
BMC Neurol ; 21(1): 256, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215216

RESUMO

BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disease with no cure and few treatment options. Its incidence is increasing due to aging populations, longer disease duration and potentially as a COVID-19 sequela. Photobiomodulation (PBM) has been successfully used in animal models to reduce the signs of PD and to protect dopaminergic neurons. OBJECTIVE: To assess the effectiveness of PBM to mitigate clinical signs of PD in a prospective proof-of-concept study, using a combination of transcranial and remote treatment, in order to inform on best practice for a larger randomized placebo-controlled trial (RCT). METHODS: Twelve participants with idiopathic PD were recruited. Six were randomly chosen to begin 12 weeks of transcranial, intranasal, neck and abdominal PBM. The remaining 6 were waitlisted for 14 weeks before commencing the same treatment. After the 12-week treatment period, all participants were supplied with PBM devices to continue home treatment. Participants were assessed for mobility, fine motor skills, balance and cognition before treatment began, after 4 weeks of treatment, after 12 weeks of treatment and the end of the home treatment period. A Wilcoxon Signed Ranks test was used to assess treatment effectiveness at a significance level of 5%. RESULTS: Measures of mobility, cognition, dynamic balance and fine motor skill were significantly improved (p < 0.05) with PBM treatment for 12 weeks and up to one year. Many individual improvements were above the minimal clinically important difference, the threshold judged to be meaningful for participants. Individual improvements varied but many continued for up to one year with sustained home treatment. There was a demonstrable Hawthorne Effect that was below the treatment effect. No side effects of the treatment were observed. CONCLUSIONS: PBM was shown to be a safe and potentially effective treatment for a range of clinical signs and symptoms of PD. Improvements were maintained for as long as treatment continued, for up to one year in a neurodegenerative disease where decline is typically expected. Home treatment of PD by the person themselves or with the help of a carer might be an effective therapy option. The results of this study indicate that a large RCT is warranted. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry, registration number: ACTRN12618000038291p , registered on 12/01/2018.


Assuntos
Terapia com Luz de Baixa Intensidade , Doença de Parkinson/terapia , COVID-19 , Humanos , Estudos Prospectivos , SARS-CoV-2
20.
Physiother Theory Pract ; 37(3): 389-400, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33678141

RESUMO

Objective: The objective of this narrative review was to investigate the history of light therapy in hospital settings, with reference to physiotherapy and particularly in an Australian context.Types of articles and search method:a review of available literature was conducted on PubMed, Medline and Google Scholar using keywords light therapy, photobiomodulation, physiotherapy, low-level laser, heliotherapy. Physiotherapy textbooks from Sydney University Library were searched. Historical records were accessed from the San Hospital library. Interviews were conducted with the San Hospital Chief Librarian and a retired former Head Physiotherapist from Royal Prince Alfred Hospital.Summary: Historically, light treatment has been used in both medical and physiotherapy practice. From its roots in ancient Egypt, India, and Greece, through to medieval times, the modern renaissance in 'light as therapy ' was begun by Florence Nightingale who, in the 1850s, advocated the use of clean air and an abundance of sunlight to restore health. Modern light therapy (phototherapy) had a marked uptake in use in medicine in Scandinavia, America, and Australia from 1903, following the pioneering work of Niels Finsen in the late 19th century, which culminated in Dr Finsen receiving the Nobel Prize for Medicine for the treatment of tuberculosis scarring with ultraviolet (UV) light, and treatment of smallpox scarring with red light. Treatment with light, especially UVB light, has been widely applied by physiotherapists in hospitals for dermatological conditions since the 1950s, particularly in Australia, Scandinavia, USA, England and Canada. In parallel, light treatment in hospitals for hyperbilirubinemia was used for neonatal jaundice. Since the 1980s light was also used in the medical specialties of ophthalmology, dermatology, and cardiology. In more recent years in physiotherapy, light was mostly used as an adjunct to the management of orthopedic/rheumatological conditions. Since the 1990s, there has been global use of light, in the form of photobiomodulation for the management of lymphedema, including in supportive cancer care. Photobiomodulation in the form of low-level laser has been used by physiotherapists and pain doctors since the 1990s in the management of chronic pain. The use of light as therapy is exemplified by its use in the San Hospital in Sydney, where light therapy was introduced in 1903 (after Dr. John Harvey Kellogg visited Niels Finsen in Denmark) and is practiced by nurses, physiotherapists and doctors until the present day. The use of light has expanded into new and exciting practices including supportive cancer care, and treatment of depression, oral mucositis, retinopathy of prematurity, and cardiac surgery complications. Light is also being used in the treatment of neurological diseases, such as Parkinson's disease, traumatic brain injury, and multiple sclerosis. The innovative uses of light in physiotherapy treatment would not be possible without the previous experience of successful application of light treatment.Conclusion: Light therapy has had a long tradition in medicine and physiotherapy. Although it has fallen somewhat out of favour over the past decades, there has been a renewed interest using modern techniques in recent times. There has been continuous use of light as a therapy in hospitals in Australia, most particularly the San Hospital in Sydney where it has been in use for almost 120 years.


Assuntos
Fototerapia/história , Modalidades de Fisioterapia/história , Austrália , História do Século XIX , História do Século XX , História do Século XXI , Hospitais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...