Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Sci Rep ; 6: 25605, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27161608

RESUMO

Next-generation molecular devices and machines demand the integration of molecular switches into hierarchical assemblies to amplify the response of the system from the molecular level to the meso- or macro-scale. Here, we demonstrate that multi-azobenzene oligomers can assemble to form robust supramolecular nanofibers in which they can be switched repeatedly between the E- and Z-configuration. While in isolated oligomers the azobenzene units undergo reversible photoisomerization independently, in the nanofibers they are coupled via intermolecular interactions and switch cooperatively as evidenced by unusual thermal and kinetic behavior. We find that the photoisomerization rate from the Z-isomer to the E-isomer depends on the fraction of Z-azobenzene in the nanofibers, and is increased by more than a factor of 4 in Z-rich fibers when compared to E-rich fibers. This demonstrates the great potential of coupling individual photochromic units for increasing their quantum efficiency in the solid state with potential relevance for actuation and sensing.

2.
ACS Nano ; 8(12): 11987-93, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25345562

RESUMO

Synthetic rigid-rod polymers incorporating multiple azobenzene photoswitches in the backbone were deposited from solution onto a monolayer of octadecylamine covering the basal plane of graphite. Large contractions and extensions of the single macromolecules on the surface were induced by irradiation with UV and visible light, respectively, as visualized by scanning force microscopy. Upon contraction, the single polymer chains form more compact nanostructures and also may move across the surface, resembling a crawling movement. We attribute the efficiency of these processes to the low mechanical and electronic coupling between the surface and polymers, the high density of azobenzenes in their backbones, and their rigidity, allowing for maximized photodeformations. The visualization of on-surface motions of single macromolecules directly induced by light, as reported herein, could help promote the development of optomechanical nanosystems.

3.
Angew Chem Int Ed Engl ; 50(52): 12559-63, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22114009

RESUMO

Light can play: Irradiation causes dramatic changes in the shape of rigid-rod polymers incorporating azobenzene photochromes in the main chain. The embedded photoswitches act as hinges, which upon light-induced isomerization lead to reversible shrinking and stretching of the polymer backbone (see scheme), resembling light-orchestrated macromolecular accordions.


Assuntos
Luz , Polímeros/química , Substâncias Macromoleculares/química , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...