Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675925

RESUMO

The interferon-induced host cell protein Shiftless (SFL) inhibits -1 programmed ribosomal frameshifting (-1PRF) required for the expression of HIV-1 Gal-Pol and the formation of infectious HIV-1 particles. However, the specific regions in SFL required for antiviral activity and the mechanism by which SFL inhibits -1PRF remain unclear. Employing alanine scanning mutagenesis, we found that basic amino acids in the predicted zinc ribbon motif of SFL are essential for the suppression of Gag-Pol expression but dispensable for anti-HIV-1 activity. We have shown that SFL inhibits the expression of the murine leukemia virus (MLV) Gag-Pol polyprotein and the formation of infectious MLV particles, although Gag-Pol expression of MLV is independent of -1PRF but requires readthrough of a stop codon. These findings indicate that SFL might inhibit HIV-1 infection by more than one mechanism and that SFL might target programmed translational readthrough as well as -1PRF signals, both of which are regulated by mRNA secondary structure elements.


Assuntos
Proteínas de Fusão gag-pol , Infecções por HIV , HIV-1 , Proteínas de Ligação a RNA , Humanos , Mudança da Fase de Leitura do Gene Ribossômico , Proteínas de Fusão gag-pol/genética , Proteínas de Fusão gag-pol/metabolismo , Regulação Viral da Expressão Gênica , Células HEK293 , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/metabolismo , HIV-1/genética , HIV-1/fisiologia , Vírus da Leucemia Murina/genética , Vírus da Leucemia Murina/fisiologia , Replicação Viral , Proteínas de Ligação a RNA/metabolismo
2.
Elife ; 102021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34951404

RESUMO

In meiosis, DNA double-strand break (DSB) formation by Spo11 initiates recombination and enables chromosome segregation. Numerous factors are required for Spo11 activity, and couple the DSB machinery to the development of a meiosis-specific 'axis-tethered loop' chromosome organisation. Through in vitro reconstitution and budding yeast genetics, we here provide architectural insight into the DSB machinery by focussing on a foundational DSB factor, Mer2. We characterise the interaction of Mer2 with the histone reader Spp1, and show that Mer2 directly associates with nucleosomes, likely highlighting a contribution of Mer2 to tethering DSB factors to chromatin. We reveal the biochemical basis of Mer2 association with Hop1, a HORMA domain-containing chromosomal axis factor. Finally, we identify a conserved region within Mer2 crucial for DSB activity, and show that this region of Mer2 interacts with the DSB factor Mre11. In combination with previous work, we establish Mer2 as a keystone of the DSB machinery by bridging key protein complexes involved in the initiation of meiotic recombination.


Organisms are said to be diploid when they carry two copies of each chromosome in their cells, one from each of their biological parents. But in order for each parent to only pass on one copy of their own chromosomes, they need to make haploid cells, which only carry one copy of each chromosome. These cells form by a special kind of cell division called meiosis, in which the two chromosomes from each pair in the parent cells are first linked, and then pulled apart into the daughter cells. Accurate meiosis requires a type of DNA damage called double-stranded DNA breaks. These breaks cut through the chromosomes and can be dangerous to the cell if they are not repaired correctly. During meiosis, a set of proteins gather around the chromosomes to ensure the cuts happen in the right place and to repair the damage. One of these proteins is called Mer2. Previous studies suggest that this protein plays a role in placing the DNA breaks and controlling when they happen. To find out more, Rousova et al. examined Mer2 and the proteins that interact with it in budding yeast cells. This involved taking the proteins out of the cell to get a closer look. The experiments showed that Mer2 sticks directly to the chromosomes and acts as a tether for other proteins. It collaborates with two partners, called Hop1 and Mre11, to make sure that DNA breaks happen safely. These proteins detect the state of the chromosome and repair the damage. Stopping Mer2 from interacting with Mre11 prevented DNA breaks from forming in budding yeast cells. Although Rousova et al. used budding yeast to study the proteins involved in meiosis, similar proteins exist in plant and animal cells too. Understanding how they work could open new avenues of research into cell division. For example, studies on plant proteins could provide tools for creating new crop strains. Studies on human proteins could also provide insights into fertility problems and cancer.


Assuntos
Quebras de DNA de Cadeia Dupla , Meiose , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...