Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39273571

RESUMO

Amyloid-beta peptide (Aß) is a neurotoxic constituent of senile plaques in the brains of Alzheimer's disease (AD) patients. The detailed mechanisms by which protein kinase C-delta (PKCδ) contributes to Aß toxicity is not yet entirely understood. Using fully differentiated primary rat cortical neurons, we found that inhibition of Aß25-35-induced PKCδ increased cell viability with restoration of neuronal morphology. Using cyclin D1, proliferating cell nuclear antigen (PCNA), and histone H3 phosphorylated at Ser-10 (p-Histone H3) as the respective markers for the G1-, S-, and G2/M-phases, PKCδ inhibition mitigated cell cycle reentry (CCR) and subsequent caspase-3 cleavage induced by both Aß25-35 and Aß1-42 in the post-mitotic cortical neurons. Upstream of PKCδ, signal transducers and activators of transcription (STAT)-3 mediated PKCδ induction, CCR, and caspase-3 cleavage upon Aß exposure. Downstream of PKCδ, aberrant neuronal CCR was triggered by overactivating cyclin-dependent kinase-5 (CDK5) via calpain2-dependent p35 cleavage into p25. Finally, PKCδ and CDK5 also contributed to Aß25-35 induction of p53-upregulated modulator of apoptosis (PUMA) in cortical neurons. Together, we demonstrated that, in the post-mitotic neurons exposed to Aßs, STAT3-dependent PKCδ expression triggers calpain2-mediated p35 cleavage into p25 to overactivate CDK5, thus leading to aberrant CCR, PUMA induction, caspase-3 cleavage, and ultimately apoptosis.


Assuntos
Peptídeos beta-Amiloides , Apoptose , Ciclo Celular , Córtex Cerebral , Neurônios , Proteína Quinase C-delta , Peptídeos beta-Amiloides/metabolismo , Animais , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ratos , Proteína Quinase C-delta/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Ciclo Celular/efeitos dos fármacos , Quinase 5 Dependente de Ciclina/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Caspase 3/metabolismo , Ratos Sprague-Dawley , Células Cultivadas , Transdução de Sinais/efeitos dos fármacos
2.
J Agric Food Chem ; 71(19): 7370-7381, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37142545

RESUMO

Evidence shows that the dietary intake of polycyclic aromatic hydrocarbons (PAHs) from food processing induces the cellular DNA damage response and leads to the development of colorectal cancer (CRC). Therefore, protecting from cellular DNA damage might be an effective strategy in preventing CRC. Benzo[a]pyrene (B[a]P) was used as a CRC initiator in the present study. Compared with other stilbenoids, piceatannol (PIC) showed the most effective inhibition of B[a]P-induced cytochrome P450 1B1 (CYP1B1) protein expression in NCM460 normal human colon epithelial cells. PIC treatment alleviated DNA migration and enhanced the expression of DNA-repair-related proteins, including histone 2AX (H2AX), checkpoint kinase 1 (Chk1), and p53, in B[a]P-induced NCM460 cells. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, flow cytometry, and enzyme-linked immunosorbent assay (ELISA) revealed that PIC exerted antioxidative effects on NCM460 cells by increasing the glutathione (GSH) content and scavenging the excess intracellular reactive oxygen species (ROS) induced by B[a]P. Furthermore, PIC suppressed B[a]P-induced CYP1B1 protein expression and stimulated miR-27b-3p expression. The upregulation of phase II detoxification enzymes, such as nicotinamide adenine dinucleotide phosphate (NADPH) and quinone oxidoreductase 1 (NQO1), and the antioxidative enzyme, heme oxygenase 1 (HO-1), via the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway was observed in the PIC-treated group. Our results suggest that PIC is a potential CRC-blocking agent due to its ability to alleviate DNA damage, decrease intracellular ROS production, modulate the metabolism and detoxification of B[a]P, and activate the Nrf2 signaling pathway in B[a]P-induced NCM460 cells.


Assuntos
Benzo(a)pireno , Estilbenos , Humanos , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Dano ao DNA , Estilbenos/farmacologia , Estilbenos/metabolismo , Células Epiteliais/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA