Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 602(7898): 590-594, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35197616

RESUMO

The sensing of gravity has emerged as a tool in geophysics applications such as engineering and climate research1-3, including the monitoring of temporal variations in aquifers4 and geodesy5. However, it is impractical to use gravity cartography to resolve metre-scale underground features because of the long measurement times needed for the removal of vibrational noise6. Here we overcome this limitation by realizing a practical quantum gravity gradient sensor. Our design suppresses the effects of micro-seismic and laser noise, thermal and magnetic field variations, and instrument tilt. The instrument achieves a statistical uncertainty of 20 E (1 E = 10-9 s-2) and is used to perform a 0.5-metre-spatial-resolution survey across an 8.5-metre-long line, detecting a 2-metre tunnel with a signal-to-noise ratio of 8. Using a Bayesian inference method, we determine the centre to ±0.19 metres horizontally and the centre depth as (1.89 -0.59/+2.3) metres. The removal of vibrational noise enables improvements in instrument performance to directly translate into reduced measurement time in mapping. The sensor parameters are compatible with applications in mapping aquifers and evaluating impacts on the water table7, archaeology8-11, determination of soil properties12 and water content13, and reducing the risk of unforeseen ground conditions in the construction of critical energy, transport and utilities infrastructure14, providing a new window into the underground.

2.
Sci Adv ; 6(31): eabb6667, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32832692

RESUMO

Compact and robust cold atom sources are increasingly important for quantum research, especially for transferring cutting-edge quantum science into practical applications. In this study, we report on a novel scheme that uses a metasurface optical chip to replace the conventional bulky optical elements used to produce a cold atomic ensemble with a single incident laser beam, which is split by the metasurface into multiple beams of the desired polarization states. Atom numbers ~107 and temperatures (about 35 µK) of relevance to quantum sensing are achieved in a compact and robust fashion. Our work highlights the substantial progress toward fully integrated cold atom quantum devices by exploiting metasurface optical chips, which may have great potential in quantum sensing, quantum computing, and other areas.

3.
Opt Express ; 26(6): 6542-6553, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29609342

RESUMO

A frequency doubled I/Q modulator based optical single-sideband (OSSB) laser system is demonstrated for atomic physics research, specifically for atom interferometry where the presence of additional sidebands causes parasitic transitions. The performance of the OSSB technique and the spectrum after second harmonic generation are measured and analyzed. The additional sidebands are removed with better than 20 dB suppression, and the influence of parasitic transitions upon stimulated Raman transitions at varying spatial positions is shown to be removed beneath experimental noise. This technique will facilitate the development of compact atom interferometry based sensors with improved accuracy and reduced complexity.

4.
Rev Sci Instrum ; 86(8): 083106, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26329173

RESUMO

Dibenzoterrylene (DBT) molecules within a crystalline anthracene matrix show promise as quantum emitters for controlled, single photon production. We present the design and construction of a chamber in which we reproducibly grow doped anthracene crystals of optical quality that are several mm across and a few µm thick. We demonstrate control of the DBT concentration over the range 6-300 parts per trillion and show that these DBT molecules are stable single-photon emitters. We interpret our data with a simple model that provides some information on the vapour pressure of DBT.

5.
Opt Express ; 21(8): 9238-46, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23609634

RESUMO

We have developed a widely tunable mid-infrared difference frequency generation (DFG) source by mixing ~ 1 W Ti:sapphire laser and 6 W Nd:YAG laser beams in a 50-mm MgO-doped long periodically poled lithium niobate (MgO:PPLN). The power of the DFG source is > 2 mW over the tuning range of 2.66-4.77 µm and its free-running linewidth is about 100 kHz. Combining various frequency stabilisation schemes for the Nd:YAG laser and the Ti:sapphire laser, the DFG frequency can be precisely controlled. Besides, its frequency can be determined better than 12 kHz by measuring the Ti:sapphire laser frequency using an optical frequency comb. Two high resolution spectroscopic studies on (12)C(16)O(2) molecule are demonstrated using this DFG source. The saturation spectra of R(18) and R(60) transitions of 00(0)1 ← 00(0)0 fundamental band at 4.2 µm and P(20) transition of [10(0)1, 02(0)1](I) ← 00(0)0 band at 2.7 µm have been observed and their absolute transition frequencies are measured with an accuracy better than 30 kHz.


Assuntos
Lasers , Iluminação/instrumentação , Espectrofotometria Infravermelho/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...