Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virology ; 591: 109987, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38219372

RESUMO

The Fusarium graminearum virus China 9 (FgV-ch9) is a member of the genus Betachrysovirus in the Chrysoviridae family and causes hypovirulence in its host, Fusarium graminearum, the causal agent of Fusarium head blight. Although insights into viral biology of FgV-ch9 have expanded in recent years, questions regarding the function of virus-encoded proteins, cis-acting elements, and virus transmission are yet to be answered. Therefore, we developed a tool for the establishment of an artificial 6th segment of FgV-ch9, which encodes a GFP gene flanked by the non-translated regions of FgV-ch9 segment 1. Subsequently, we have proved successful encapsidation of this artificial segment into virus particles as well as its horizontal transmission. Expression of GFP was further verified via immunoassay and life cell imaging. Thus far, we were able to establish for the first time a mini-replicon system for segmented dsRNA viruses replicating in fungi.


Assuntos
Fusarium , Vírus de RNA , Vírus de RNA/genética , Fusarium/genética , Proteínas Virais/genética , China
2.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502365

RESUMO

Plant U-box armadillo repeat (PUB-ARM) ubiquitin (Ub) ligases have important functions in plant defense through the ubiquitination of target proteins. Defense against pathogens involves vesicle trafficking and the formation of extracellular vesicles. The PUB-ARM protein SENESCENCE ASSOCIATED UBIQUITIN E3 LIGASE1 (SAUL1) can form patches at the plasma membrane related to tethering multi-vesicular bodies (MVBs) to the plasma membrane. We uncovered the structure of a full-length plant ubiquitin ligase and the structural requirements of SAUL1, which are crucial for its function in patch formation. We resolved the structure of SAUL1 monomers by small-angle X-ray scattering (SAXS). The SAUL1 model showed that SAUL1 consists of two domains: a domain containing the N-terminal U-box and armadillo (ARM) repeats and the C-terminal ARM repeat domain, which includes a positively charged groove. We showed that all C-terminal ARM repeats are essential for patch formation and that this function requires arginine residue at position 736. By applying SAXS to polydisperse SAUL1 systems, the oligomerization of SAUL1 is detectable, with SAUL1 tetramers being the most prominent oligomers at higher concentrations. The oligomerization domain consists of the N-terminal U-box and some N-terminal ARM repeats. Deleting the U-box resulted in the promotion of the SAUL1 tethering function. Our findings indicate that structural changes in SAUL1 may be fundamental to its function in forming patches at the plasma membrane.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/ultraestrutura , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Domínios Proteicos/genética , Transporte Proteico , Espalhamento a Baixo Ângulo , Ubiquitina/metabolismo , Ubiquitinação , Difração de Raios X/métodos
3.
J Exp Bot ; 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34519761

RESUMO

Plants possess a well-balanced immune system that is required for defense against pathogen infections. In autoimmune mutants or necrotic crosses, an intrinsic temperature-dependent imbalance leads to constitutive immune activation, resulting in severe damage or even death of plants. Recently, cell wall depositions were described as one of the symptoms following induction of the autoimmune phenotype in Arabidopsis saul1-1 mutants. However, the regulation and function of these depositions remained unclear. Here, we show that cell wall depositions, containing lignin and callose, were a common autoimmune feature and were deposited in proportion to the severity of the autoimmune phenotype at reduced ambient temperatures. When plants were exposed to reduced temperature for periods insufficient to induce an autoimmune phenotype, the cell wall depositions were not present. After low temperature intervals, sufficient to induce autoimmune responses, cell wall depositions correlated with a point of no return in saul1-1 autoimmunity. Although cell wall depositions were largely abolished in saul1-1 pmr4-1 double mutants lacking SAUL1 and the callose synthase gene GSL5/PMR4, their phenotype remained unchanged compared to that of the saul1-1 single mutant. Our data showed that cell wall depositions generally occur in autoimmunity, but appear not to be the cause of autoimmune phenotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...