Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 15(41): 10880-7, 2009 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-19746459

RESUMO

The distorted trigonal-bipyramidal Cu(II) complex [Cu(L(1))(NCCH(3))](2+) of the novel tetradentate bispidine-derived ligand L(1) with four tertiary amine donors (L(1)=1,5-diphenyl-3-methyl-7-(1,4,6-trimethyl-1,4-diazacycloheptane-6-yl)diazabicyclo[3.3.1]nonane-9-one) is a very efficient catalyst for the aziridination of olefins in the presence of a nitrene source. In agreement with the experimental data (in situ spectroscopy, product distribution, and its dependence on the geometry of the substrate and of the nitrene source), a theoretical analysis based on DFT calculations indicates that the active catalyst has the Cu center in its +II oxidation state, that electron transfer is not involved, and that the conversion of the olefin to an aziridine is a stepwise process involving a radical intermediate. The striking change of efficiency and reaction mechanism between classical copper-bispidine complexes and the novel L(1)-based catalyst is primarily attributed to the structural variation, enforced by the ligand architecture.

2.
Inorg Chem ; 46(16): 6420-6, 2007 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-17608472

RESUMO

The electronic structure, based on DFT calculations, of a range of FeIV=O complexes with two tetra- (L1 and L2) and two isomeric pentadentate bispidine ligands (L3 and L4) is discussed with special emphasis on the relative stability of the two possible spin states (S = 1, triplet, intermediate-spin, and S = 2, quintet, high-spin; bispidines are very rigid diazaadamantane-derived 3,7-diazabicyclo[3.3.1]nonane ligands with two tertiary amine and two or three pyridine donors, leading to cis-octahedral [(X)(L)FeIV=O]2+ complexes, where X = NCCH3, OH2, OH-, and pyridine, and where X = pyridine is tethered to the bispidine backbone in L3, L4). The two main structural effects are a strong trans influence, exerted by the oxo group in both the triplet and the quintet spin states, and a Jahn-Teller-type distortion in the plane perpendicular to the oxo group in the quintet state. Due to the ligand architecture the two sites for substrate coordination in complexes with the tetradentate ligands L1 and L2 are electronically very different, and with the pentadentate ligands L3 and L4, a single isomer is enforced in each case. Because of the rigidity of the bispidine ligands and the orientation of the "Jahn-Teller axis", which is controlled by the sixth donor X, the Jahn-Teller-type distortion in the high-spin state of the two isomers is quite different. It is shown how this can be used as a design principle to tune the relative stability of the two spin states.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Eletroquímica/métodos , Ferro/química , Química/métodos , Eletrônica , Elétrons , Ligantes , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Piridinas/química , Software
5.
Angew Chem Int Ed Engl ; 45(2): 206-22, 2005 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-16342123

RESUMO

From an economic perspective, textile and paper bleaching are amongst the most important oxidation processes. The removal of unwanted chromophores, be it stains on cloths or residual lignin in wood pulp, consumes more than 60 % of the world production of hydrogen peroxide. However, existing technologies have their limitations. At ambient temperature, hydrogen peroxide gives little stain bleaching and is used inefficiently. Hence the high product dosages and washing temperatures required limit its application to predominantly European markets, to the exclusion of the majority of the world's population. In paper manufacture, the use of chlorine-based oxidants results in the formation of chlorinated waste products, which show poor biodegradability. On the other hand, hydrogen peroxide requires higher temperatures, longer reaction times and is more expensive. Transition-metal catalysts offer an alternative. This review discusses the main classes of known bleach catalysts and their possible modes of action.


Assuntos
Cor , Têxteis , Elementos de Transição/química , Madeira , Catálise , Peróxido de Hidrogênio/química
6.
Inorg Chem ; 44(22): 8145-55, 2005 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-16241165

RESUMO

The hexadentate bispidine-based ligand 2,4-bis(2-pyridyl)-3,7-bis(2-methylenepyridine)-3,7-diazabicyclo[3.3.1]nonane-9-on-1,5-bis(carbonic acid methyl ester), L(6m), with four pyridine and two tertiary amine donors, based on a very rigid diazaadamantane-derived backbone, is coordinated to a range of metal ions. On the basis of experimental and computed structural data, the ligand is predicted to form very stable complexes. Force field calculations indicate that short metal-donor distances lead to a buildup of strain in the ligand; that is, the coordination of large metal ions is preferred. This is confirmed by experimentally determined stability constants, which indicate that, in general, stabilities comparable to those with macrocyclic ligands are obtained with the relative order Cu(2+) > Zn(2+) >> Ni(2+) < Co(2+), which is not the typical Irving-Williams behavior. The preference for large M-N distances also emerges from relatively high redox potentials (the higher oxidation states, that is, the smaller metal ions, are destabilized) and from relatively weak ligand fields (dd-transition, high-spin electronic ground states). The potentiometric titrations confirm the efficient encapsulation of the metal ions since only 1:1 complexes are observed, and, over a large pH range, ML is generally the only species present in solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...